cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A051100 Primes p such that x^62 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 691, 739, 761, 769, 787, 809, 811, 827, 857, 859, 881, 883, 907, 929, 937, 947, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Differs from A033203 first at the 109th entry, at p=1427. - R. J. Mathar, Oct 14 2008
Complement of A216776 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^62 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^62 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011
Showing 1-1 of 1 results.