cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216784 a(n) is the number of distinct prime divisors of n^2 + 1 of the form m^2 + 1.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 1, 1, 2, 2, 1, 1, 1, 1, 3, 0, 1, 0, 3, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 0, 1, 2, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 2
Offset: 1

Views

Author

Michel Lagneau, Oct 15 2012

Keywords

Comments

a(m) = 0 for m = A217276(n).

Examples

			a(13) = 3 because 13^2+1 = 170 = 2*5*17 with 3 divisors of the form m^2+1 such that 2 = 1^2+1, 5=2^2+1 and 17 = 4^2+1.
a(34) = 0 because 34^2+1 = 1157 = 13*89 and the prime divisors 13, 89 are not of the form m^2+1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=n^2+1:y:=factorset(x):n1:=nops(y):i:=0:for k from 1 to n1 do:z:=sqrt(y[k]-1):if z=floor(z) then i:=i+1:else fi:od: printf(`%d, `,i):od:
    # second Maple program:
    a:= n-> nops(select(x-> issqr(x-1), ifactors(n^2+1)[2][..., 1])):
    seq(a(n), n=1..87);  # Alois P. Heinz, Jul 24 2025
  • Mathematica
    a[n_] := Length @ Select[FactorInteger[n^2 + 1][[;;,1]], IntegerQ @ Sqrt[# - 1] &]; Array[a, 100] (* Amiram Eldar, Sep 11 2019 *)