cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216785 Number of unlabeled graphs on n nodes that have exactly two non-isomorphic components.

Original entry on oeis.org

0, 0, 1, 2, 8, 28, 145, 1022, 12320, 274785, 12007355, 1019030127, 165091859656, 50502058491413, 29054157815353374, 31426486309136268658, 64001015806929213894372, 245935864212056913811498454, 1787577725208700551275529005084, 24637809253253259917745389824933448
Offset: 1

Views

Author

Geoffrey Critzer, Oct 15 2012

Keywords

Comments

Stated more precisely: Number of unlabeled graphs on n nodes that have exactly two connected components and these components are not isomorphic (and nonempty).

Examples

			a(4)=2 = 1*2 where 1*2=A001349(1)*A001349(3) counts graphs with a component of 1 node and a component with 3 nodes. There is no contribution with a component of 2 nodes and another component of 2 nodes because A001349(2)=1 means these components would be isomorphic. - _R. J. Mathar_, Jul 18 2016
a(5)=8 = 1*6 + 1*2 where 1*6=A001349(1)*A001349(4) counts graphs with a component of 1 node and a component with 4 nodes, and where 1*2 = A001349(2)*A001349(3) counts graphs with a component of 2 nodes and a component of 3 nodes. - _R. J. Mathar_, Jul 18 2016
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 48.

Crossrefs

Cf. A058915, A001349, A217955, A275165, A275166 (allows an empty component), A274934 (allows isomorphic components).

Programs

  • Mathematica
    Needs["Combinatorica`"]; max=25; A000088=Table[NumberOfGraphs[n], {n, 0, max}]; f[x_]=1-Product[1/(1-x^k)^a[k], {k, 1, max}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x, 0, max}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; cg=Table[a[n], {n, 1, max}]/.sol; Take[CoefficientList[CycleIndex[AlternatingGroup[2], s]-CycleIndex[SymmetricGroup[2], s]/.Table[s[j]->Table[Sum[cg[[i]] x^(k*i), {i, 1, max}], {k, 1, max}][[j]], {j, 1, 3}], x], {4, max}]  (* after code given by Jean-François Alcover in A001349 *)
  • PARI
    {c=[1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476, 50335907869219, 29003487462848061, 31397381142761241960, 63969560113225176176277, 245871831682084026519528568, 1787331725248899088890200576580, 24636021429399867655322650759681644];}
    for(n=0,19,print([n,sum(j=1,(n-1)\2,c[j]*c[n-j])+if(n%2==0,c[n/2]*(c[n/2]-1)/2)])); /* David Broadhurst, Jul 18 2016 */
    
  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial, comb
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A216785(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        @lru_cache(maxsize=None)
        def d(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n
        return sum(d(i)*d(n-i) for i in range(1,n+1>>1)) + (0 if n&1 else comb(d(n>>1),2)) # Chai Wah Wu, Jul 03 2024

Formula

O.g.f.: A(x)^2/2 - A(x^2)/2 where A(x) is the o.g.f. for A001349 after setting A001349(0)=0.

Extensions

Two zeros prepended (offset changed), formula updated, and entries corrected by R. J. Mathar, N. J. A. Sloane, Jul 18 2016. (Thanks to Allan C. Wechsler for pointing out that all the entries above a(19) were wrong.)