A216785 Number of unlabeled graphs on n nodes that have exactly two non-isomorphic components.
0, 0, 1, 2, 8, 28, 145, 1022, 12320, 274785, 12007355, 1019030127, 165091859656, 50502058491413, 29054157815353374, 31426486309136268658, 64001015806929213894372, 245935864212056913811498454, 1787577725208700551275529005084, 24637809253253259917745389824933448
Offset: 1
Keywords
Examples
a(4)=2 = 1*2 where 1*2=A001349(1)*A001349(3) counts graphs with a component of 1 node and a component with 3 nodes. There is no contribution with a component of 2 nodes and another component of 2 nodes because A001349(2)=1 means these components would be isomorphic. - _R. J. Mathar_, Jul 18 2016 a(5)=8 = 1*6 + 1*2 where 1*6=A001349(1)*A001349(4) counts graphs with a component of 1 node and a component with 4 nodes, and where 1*2 = A001349(2)*A001349(3) counts graphs with a component of 2 nodes and a component of 3 nodes. - _R. J. Mathar_, Jul 18 2016
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 48.
Links
- David Broadhurst, Table of n, a(n) for n = 1..76
Crossrefs
Programs
-
Mathematica
Needs["Combinatorica`"]; max=25; A000088=Table[NumberOfGraphs[n], {n, 0, max}]; f[x_]=1-Product[1/(1-x^k)^a[k], {k, 1, max}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x, 0, max}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; cg=Table[a[n], {n, 1, max}]/.sol; Take[CoefficientList[CycleIndex[AlternatingGroup[2], s]-CycleIndex[SymmetricGroup[2], s]/.Table[s[j]->Table[Sum[cg[[i]] x^(k*i), {i, 1, max}], {k, 1, max}][[j]], {j, 1, 3}], x], {4, max}] (* after code given by Jean-François Alcover in A001349 *)
-
PARI
{c=[1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476, 50335907869219, 29003487462848061, 31397381142761241960, 63969560113225176176277, 245871831682084026519528568, 1787331725248899088890200576580, 24636021429399867655322650759681644];} for(n=0,19,print([n,sum(j=1,(n-1)\2,c[j]*c[n-j])+if(n%2==0,c[n/2]*(c[n/2]-1)/2)])); /* David Broadhurst, Jul 18 2016 */
-
Python
from functools import lru_cache from itertools import combinations from fractions import Fraction from math import prod, gcd, factorial, comb from sympy import mobius, divisors from sympy.utilities.iterables import partitions def A216785(n): @lru_cache(maxsize=None) def b(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) @lru_cache(maxsize=None) def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) @lru_cache(maxsize=None) def d(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n return sum(d(i)*d(n-i) for i in range(1,n+1>>1)) + (0 if n&1 else comb(d(n>>1),2)) # Chai Wah Wu, Jul 03 2024
Formula
Extensions
Two zeros prepended (offset changed), formula updated, and entries corrected by R. J. Mathar, N. J. A. Sloane, Jul 18 2016. (Thanks to Allan C. Wechsler for pointing out that all the entries above a(19) were wrong.)
Comments