A216787 a(n) = Product_{k=1..n} (144 - 12/k).
1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0
Keywords
Programs
-
Maple
seq(product(144-12/k, k=1.. n), n=0..20); seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
-
Mathematica
Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)
Formula
From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 144^n * Gamma(n+11/12) / (Gamma(11/12) * Gamma(n+1)).
a(n) ~ c * 144^n / n^(1/12), where c = 1/Gamma(11/12) = 0.947376... . (End)
Comments