cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216835 Fibonacci + Goldbach (dual sequence to A216275). a(1)=5, a(2)=7 and for n>=3, a(n) = g(a(n-1) + a(n-2)), where for m>=3, g(2*m) is the maximal prime p < 2*m such that 2*m - p is prime.

Original entry on oeis.org

5, 7, 7, 11, 13, 19, 29, 43, 67, 107, 167, 271, 433, 701, 1129, 1823, 2939, 4759, 7691, 12437, 20123, 32537, 52631, 85121, 137723, 222841, 360551, 583351, 943871, 1527203, 2471071, 3998263, 6469303, 10467547, 16936753, 27404297, 44341027, 71745313, 116086303
Offset: 1

Views

Author

Vladimir Shevelev, Mar 16 2013

Keywords

Comments

Conjecture. lim a(n+1)/a(n)=phi as n goes to infinity (phi=golden ratio).

Crossrefs

Programs

  • Mathematica
    a[1] = 5; a[2] = 7; g[n_] := Module[{tmp,k=1}, While[!PrimeQ[n-(tmp=NextPrime[n,-k])], k++]; tmp]; a[n_] := a[n] = g[a[n-1] + a[n-2]]; Table[a[n], {n,1,100}]

Formula

a(n) = g(A216275(n+2)).