A078414 a(n) = (a(n-1)+a(n-2))/7^k, where 7^k is the highest power of 7 dividing a(n-1)+a(n-2).
1, 1, 2, 3, 5, 8, 13, 3, 16, 19, 5, 24, 29, 53, 82, 135, 31, 166, 197, 363, 80, 443, 523, 138, 661, 799, 1460, 2259, 3719, 122, 3841, 3963, 7804, 1681, 1355, 3036, 4391, 1061, 5452, 6513, 11965, 18478, 4349, 3261, 7610, 1553, 187, 1740, 1927, 3667, 5594, 27
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..4000
- B. Avila, T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
Programs
-
Maple
a:= proc(n) option remember; local t, j; if n<3 then 1 else t:= a(n-1)+a(n-2); while irem(t, 7, 'j')=0 do t:=j od; t fi end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 25 2012
-
Mathematica
nxt[{a_,b_}]:=Module[{n=IntegerExponent[a+b,7]},{b,(a+b)/7^n}]; Transpose[ NestList[nxt,{1,1},60]][[1]] (* Harvey P. Dale, Jul 23 2012 *)
Formula
a(n) = A242603(a(n-1)+a(n-2)). - R. J. Mathar, Mar 13 2024
Extensions
Corrected by Harvey P. Dale, Jul 23 2012
Comments