A216844 4k^2-8k+2 interleaved with 4k^2-4k+2 for k>=0.
2, 2, -2, 2, 2, 10, 14, 26, 34, 50, 62, 82, 98, 122, 142, 170, 194, 226, 254, 290, 322, 362, 398, 442, 482, 530, 574, 626, 674, 730, 782, 842, 898, 962, 1022, 1090, 1154, 1226, 1294, 1370, 1442, 1522, 1598, 1682, 1762, 1850, 1934, 2026, 2114, 2210, 2302, 2402
Offset: 0
Links
- Eddie Gutierrez New Interleaved Sequences Part A on oddwheel.com, Section B1 Line No. 21 (square_sequencesI.html) Part A
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
&cat[[4*k^2-8*k+2, 4*k^2-4*k+2]: k in [0..25]]; // Bruno Berselli, Sep 30 2012
-
Mathematica
Flatten[Table[{4 n^2 - 8 n + 2, 4 n^2 - 4 n + 2}, {n, 0, 25}]] (* Bruno Berselli, Sep 30 2012 *) LinearRecurrence[{2,0,-2,1},{2,2,-2,2},60] (* Harvey P. Dale, Jul 18 2020 *)
Formula
G.f.: 2*(1-x-3*x^2+5*x^3)/((1+x)*(1-x)^3). [Bruno Berselli, Sep 30 2012]
a(n) = (1/2)*(2*n*(n-4)-3*(-1)^n+7). [Bruno Berselli, Sep 30 2012]
Extensions
Definition rewritten by Bruno Berselli, Oct 25 2012
Comments