cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216801 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).

Original entry on oeis.org

2, -22, -117, -468, -1755, -6513, -24336, -91988, -351689, -1357408, -5277363, -20625774, -80909257, -318173258, -1253243498, -4941450657, -19495914360, -76945654032, -303737001009, -1199041027587, -4733273752831, -18683644465447, -73743457866962
Offset: 1

Views

Author

Roman Witula, Sep 17 2012

Keywords

Comments

a(n) is equal to the rational part of the number sqrt(2*(13 + 3*sqrt(13))/13)*X(2*n-1), where X(n) = sqrt((13 -3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13 + 3*sqrt(13))/2)*X(n-3), with X(0) = 3, X(1) = sqrt((13 - 3*sqrt(13))/2), and X(2) = -(13 + sqrt(13))/2.
Let us observe that all numbers of the form a(n)*13^(-floor((n+3)/6)) are integers.
We note that the sequence X(n) is defined "similarly" to sequence Y(n) in the comments to A216540. The only difference between them is in initial condition: X(2) = -Y(2).

Examples

			We have 4*a(3)=a(4), 4*a(4)=a(5)+a(3). The 3-valuation of a(n) for n=1,...,10 is contained in A167366. Moreover it can be obtained X(7) - 22*X(3) = 4*sqrt(2*(13-3*sqrt(13))), 4*X(5) - X(7) = 2*sqrt(26(13-3*sqrt(13))), and 15*X(5) - X(9) = 20*sqrt(26(13-3*sqrt(13))), which implies (15*X(5) - X(9))/(4*X(5) - X(7)) = 10.
		

References

  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, -65, 156, -182, 91, -13}, {2, -22, -117, -468, -1755, -6513}, 25] (* Paolo Xausa, Feb 23 2024 *)

Formula

G.f.: -x*(52*x^5-520*x^4+689*x^3-299*x^2+48*x-2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013

A217548 The Berndt-type sequences number 7 for the argument 2*Pi/13.

Original entry on oeis.org

6, 7, -65, -295, -1303, 20631, 89967, 392616, -6178549, -26970688, -117731275, 1852943703, 8088348131, 35306734632, -555682818080, -2425630962790, -10588208505263, 166644858132571, -727427431532172, 3175319503526856, -49975467287014789
Offset: 0

Views

Author

Roman Witula, Oct 06 2012

Keywords

Comments

a(n) is the rational component (with respect to the field Q(sqrt(13))) of the number A(2*n)*2*13^(floor((n+1)/3)/2), where A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0)=3, and A(1) = sqrt((13-3*sqrt(13))/2).
The basic sequence A(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) = 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
We note that s(1) + s(3) + s(9) = s(1)^(-1) + s(3)^(-1) + s(9)^(-1) = sqrt((13-3*sqrt(13))/2).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in crossrefs are given.

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

A217549 The Berndt-type sequence number 8 for the argument 2*Pi/13.

Original entry on oeis.org

0, -1, 21, 85, 365, -5707, -24935, -108872, 1713705, 7480420, 32652893, -513913649, -2243303605, -9792325686, 154118686736, 672748988550, 2936640671285, -46218967738367, -201752069488280, -880675175822422, 13860700755359325, 60503840705600655, 264107479466296733
Offset: 0

Views

Author

Roman Witula, Oct 06 2012

Keywords

Comments

a(n) is defined by the relation A217548(n) + a(n)*sqrt(13)= A(2*n)*2*13^(floor((n+1)/3)/2), where A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0) = 3, A(1) = sqrt((13-3*sqrt(13))/26).
However the basic sequence A(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) := 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in Crossrefs are given.

Examples

			We have A(1) = A(-1) = sqrt((13-3*sqrt(13))/2), A(2) = (7-sqrt(13))/2, A(3) = (2*sqrt(13)-3)*sqrt((13-3*sqrt(13))/26), A(4) = (21-5*sqrt(13))/2, A(5) = ((13*sqrt(13)-37)/2)*sqrt((13-3*sqrt(13))/26), 2*sqrt(13)*A(6)  = -295 + 85*sqrt(13), and 2*sqrt(13)*(A(6) - 4*A(4)) + 2*A(2) = -28. Furthermore it can be verified that  -a(5)/13 - a(4) - a(3) = A217548(5)/13 + A217548(4) + A217548(3) = -11.
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Showing 1-3 of 3 results.