A216801
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).
Original entry on oeis.org
2, -22, -117, -468, -1755, -6513, -24336, -91988, -351689, -1357408, -5277363, -20625774, -80909257, -318173258, -1253243498, -4941450657, -19495914360, -76945654032, -303737001009, -1199041027587, -4733273752831, -18683644465447, -73743457866962
Offset: 1
We have 4*a(3)=a(4), 4*a(4)=a(5)+a(3). The 3-valuation of a(n) for n=1,...,10 is contained in A167366. Moreover it can be obtained X(7) - 22*X(3) = 4*sqrt(2*(13-3*sqrt(13))), 4*X(5) - X(7) = 2*sqrt(26(13-3*sqrt(13))), and 15*X(5) - X(9) = 20*sqrt(26(13-3*sqrt(13))), which implies (15*X(5) - X(9))/(4*X(5) - X(7)) = 10.
- Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
-
LinearRecurrence[{13, -65, 156, -182, 91, -13}, {2, -22, -117, -468, -1755, -6513}, 25] (* Paolo Xausa, Feb 23 2024 *)
A217548
The Berndt-type sequences number 7 for the argument 2*Pi/13.
Original entry on oeis.org
6, 7, -65, -295, -1303, 20631, 89967, 392616, -6178549, -26970688, -117731275, 1852943703, 8088348131, 35306734632, -555682818080, -2425630962790, -10588208505263, 166644858132571, -727427431532172, 3175319503526856, -49975467287014789
Offset: 0
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Cf.
A019698,
A216605,
A216486,
A216508,
A216597,
A216540,
A161905,
A216450,
A216801,
A216861,
A217548,
A217549,
A211988.
A217549
The Berndt-type sequence number 8 for the argument 2*Pi/13.
Original entry on oeis.org
0, -1, 21, 85, 365, -5707, -24935, -108872, 1713705, 7480420, 32652893, -513913649, -2243303605, -9792325686, 154118686736, 672748988550, 2936640671285, -46218967738367, -201752069488280, -880675175822422, 13860700755359325, 60503840705600655, 264107479466296733
Offset: 0
We have A(1) = A(-1) = sqrt((13-3*sqrt(13))/2), A(2) = (7-sqrt(13))/2, A(3) = (2*sqrt(13)-3)*sqrt((13-3*sqrt(13))/26), A(4) = (21-5*sqrt(13))/2, A(5) = ((13*sqrt(13)-37)/2)*sqrt((13-3*sqrt(13))/26), 2*sqrt(13)*A(6) = -295 + 85*sqrt(13), and 2*sqrt(13)*(A(6) - 4*A(4)) + 2*A(2) = -28. Furthermore it can be verified that -a(5)/13 - a(4) - a(3) = A217548(5)/13 + A217548(4) + A217548(3) = -11.
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Showing 1-3 of 3 results.
Comments