cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A216540 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, 0, -1, -8, -45, -221.

Original entry on oeis.org

0, 0, -1, -8, -45, -221, -1014, -4472, -19227, -81224, -338767, -1399320, -5736705, -23377770, -94804944, -382930847, -1541565610, -6188513994, -24784429501, -99058333803, -395227906723, -1574536914951, -6264614281978, -24896955293210, -98848880984490
Offset: 1

Views

Author

Roman Witula, Sep 12 2012

Keywords

Comments

a(n) is equal to the rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2(13-3*sqrt(13)))*X(2*n-1)/13, where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2.
The Berndt-type sequence number 5 for the argument 2Pi/13 defined by the relation A161905(n) + a(n)*sqrt(13) = sqrt(2*(13-3*sqrt(13))/13)*X(2*n-1), where X(n) := s(2)^n + s(5)^n + s(6)^n, and s(j) := 2*sin(2*Pi*j/13), j=1,2,...,6.
It follows that s(2) + s(5) + s(6) = s(1)*s(3)*s(4) = sqrt((13 + 3*sqrt(13))/2) and s(2)*s(5)*s(6) = s(1) + s(3) - s(4) = sqrt((13 - 3*sqrt(13))/2).
a(n) is equal to the negated rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2(13+3*sqrt(13)))*Y(2*n-1)/13, where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. Moreover we have A161905(n) - a(n)*sqrt(13) = sqrt(2*(13+3*sqrt(13))/13)*Y(2*n-1) and Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)) - Roman Witula, Sep 22 2012

Examples

			We note that: s(2)^3 + s(5)^3 + s(6)^3 = 2*(s(2) + s(5) + s(6)),  s(2)^5 + s(5)^5 + s(6)^5 = 5* sqrt((13 + 3*sqrt(13))/2) - sqrt((13 - 3*sqrt(13))/2).
		

References

  • Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-65,156,-182,91,-13}, {0,0,-1,-8,-45,-221}, 30]

Formula

G.f.: -x^3*(2*x-1)*(3*x-1)/(13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Sep 23 2012

Extensions

Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025

A216597 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, -1, -5, -22, -91, -364.

Original entry on oeis.org

0, -1, -5, -22, -91, -364, -1430, -5564, -21541, -83200, -321100, -1239446, -4787770, -18514119, -71683040, -277913233, -1078918139, -4194134516, -16324764560, -63616690111, -248187382924, -969250588865, -3788814577730, -14823325196459, -58040165033110, -227415509487686
Offset: 0

Views

Author

Roman Witula, Sep 11 2012

Keywords

Comments

a(n) is equal to the rational part of 2*X(2*n)/sqrt(13) (with respect of the field Q(sqrt(13))), where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2.
The Berndt-type sequence number 4 for the argument 2Pi/13 defined by the relation A216508(n) + a(n)*sqrt(13) = 2*X(2*n), where X(n) := s(2)^n + s(5)^n + s(6)^n, where s(j) := 2*sin(2*Pi*j/13).
I observe that all numbers of the form (a(6*n + k + 4) - 4*a(6*n + k + 3))*13^(-n), where k = 1,...,6, n = 0,1,... are integers. For example we have a(10)-4*a(9)=900*13 and a(11)-4*a(10)=266*13^2.
We note that a(n) = -A050185(n) for n=0,1,...,5 and a(6) + A050185(6) = -2. - Roman Witula, Sep 22 2012
a(n) is equal to the negative rational part of 2*Y(2*n)/sqrt(13) (with respect of the field Q(sqrt(13))), where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. It can be proved that Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)), and 2*Y(2*n) = A216508(n) - a(n)*sqrt(13). - Roman Witula, Sep 24 2012

Examples

			We have s(2)^4 + s(5)^4 + s(6)^4 + sqrt(13) = s(2)^2 + s(5)^2 + s(6)^2 = (13 - sqrt(13))/2.
We note that 2*a(1) - a(2) = 1, 4*a(2) - a(3) = 2, 4*a(3) - a(4) = 3, 4*a(4) = a(5) and 4*a(n) - a(n+1) < 0 for every n = 5,6,...
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-65,156,-182,91,-13}, {0,-1,-5,-22,-91,-364}, 30]
  • PARI
    concat([0], Vec(-x*(13*x^4 -26*x^3 +22*x^2 -8*x +1) / (13*x^6 -91*x^5 +182*x^4 -156*x^3 +65*x^2 -13*x +1) + O(x^30))) \\ Andrew Howroyd, Feb 25 2018

Formula

G.f.: -x*(13*x^4 - 26*x^3 + 22*x^2 - 8*x + 1) / (13*x^6 - 91*x^5 + 182*x^4 - 156*x^3 + 65*x^2 - 13*x + 1). - Colin Barker, Jun 01 2013
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,n+k)*(k|13), where (k|13) represents the Legendre symbol. - Greg Dresden, Oct 09 2022

Extensions

Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025

A217548 The Berndt-type sequences number 7 for the argument 2*Pi/13.

Original entry on oeis.org

6, 7, -65, -295, -1303, 20631, 89967, 392616, -6178549, -26970688, -117731275, 1852943703, 8088348131, 35306734632, -555682818080, -2425630962790, -10588208505263, 166644858132571, -727427431532172, 3175319503526856, -49975467287014789
Offset: 0

Views

Author

Roman Witula, Oct 06 2012

Keywords

Comments

a(n) is the rational component (with respect to the field Q(sqrt(13))) of the number A(2*n)*2*13^(floor((n+1)/3)/2), where A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0)=3, and A(1) = sqrt((13-3*sqrt(13))/2).
The basic sequence A(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) = 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
We note that s(1) + s(3) + s(9) = s(1)^(-1) + s(3)^(-1) + s(9)^(-1) = sqrt((13-3*sqrt(13))/2).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in crossrefs are given.

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

A216861 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, -2, -9, -44, -215, -1001.

Original entry on oeis.org

0, -2, -9, -44, -215, -1001, -4446, -19058, -79677, -327418, -1329601, -5355272, -21446945, -85548138, -340268656, -1350664731, -5353389340, -21195056584, -83846301409, -331483318257, -1309872510973, -5174049465897, -20431456722794, -80660347594658
Offset: 1

Views

Author

Roman Witula, Sep 18 2012

Keywords

Comments

a(n) is equal to the rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2*(13 + 3*sqrt(13)))*X(2*n-1)/13, where X(n) = sqrt((13-3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13+3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13-3*sqrt(13))/2), and X(2)=-(13+sqrt(13))/2.
The sequence X(n) is defined in almost the same way as sequence Y(n) from the comments to A161905. The only difference is in the initial condition X(2) = -Y(2).

Examples

			We have a(3)-5*a(2)=a(4)-5a(3)=1, a(5)-5*a(4)=5, and 19000 + a(8) = a(4) + 2*a(3) - 2*a(2).
		

References

  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, -65, 156, -182, 91, -13}, {0, -2, -9, -44, -215, -1001}, 25] (* Paolo Xausa, Feb 23 2024 *)

Formula

G.f.: -x^2*(26*x^4-84*x^3+57*x^2-17*x+2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013

Extensions

Name clarified by Robert C. Lyons, Feb 08 2025

A217549 The Berndt-type sequence number 8 for the argument 2*Pi/13.

Original entry on oeis.org

0, -1, 21, 85, 365, -5707, -24935, -108872, 1713705, 7480420, 32652893, -513913649, -2243303605, -9792325686, 154118686736, 672748988550, 2936640671285, -46218967738367, -201752069488280, -880675175822422, 13860700755359325, 60503840705600655, 264107479466296733
Offset: 0

Views

Author

Roman Witula, Oct 06 2012

Keywords

Comments

a(n) is defined by the relation A217548(n) + a(n)*sqrt(13)= A(2*n)*2*13^(floor((n+1)/3)/2), where A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0) = 3, A(1) = sqrt((13-3*sqrt(13))/26).
However the basic sequence A(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) := 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in Crossrefs are given.

Examples

			We have A(1) = A(-1) = sqrt((13-3*sqrt(13))/2), A(2) = (7-sqrt(13))/2, A(3) = (2*sqrt(13)-3)*sqrt((13-3*sqrt(13))/26), A(4) = (21-5*sqrt(13))/2, A(5) = ((13*sqrt(13)-37)/2)*sqrt((13-3*sqrt(13))/26), 2*sqrt(13)*A(6)  = -295 + 85*sqrt(13), and 2*sqrt(13)*(A(6) - 4*A(4)) + 2*A(2) = -28. Furthermore it can be verified that  -a(5)/13 - a(4) - a(3) = A217548(5)/13 + A217548(4) + A217548(3) = -11.
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Showing 1-5 of 5 results.