A161905
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with a(1)..a(6) as shown.
Original entry on oeis.org
2, 4, 13, 52, 221, 949, 4056, 17186, 72163, 300482, 1241981, 5100758, 20833813, 84695026, 342920942, 1383646433, 5566235714, 22334785486, 89420529809, 357319721889, 1425447435997, 5678246483273, 22590565547134, 89775857333032, 356428030609222, 1413891596961194, 5604509198580578
Offset: 1
It can be shown that 4*X(5) - X(7) = sqrt(26*(13+3*sqrt(13))), 4*X(7) - X(9) = 13*(sqrt(13) - 1)*sqrt(2*(13 + 3*sqrt(13)))/4, and 4*X(11) - X(13) = 130*(sqrt(13) - 2)*sqrt(2*(13 + 3*sqrt(13)))/4, which implies
(4*X(7) - X(9))/(4*X(5) - X(7)) = 13*(sqrt(13) - 1) and
(4*X(11) - X(13))/(4*X(7) - X(9)) = 10*(sqrt(13) - 2)/(sqrt(13) - 1) = 5*(11 - sqrt(13))/6.
We also have a(6) - a(3) - a(1) = 4000, a(9) - 2*a(4) - a(3) + 3*a(1) = 300000, and a(11) - a(5) + a(4) - 2*a(2) - a(1) = 5100000.
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15.
- Index entries for linear recurrences with constant coefficients, signature (13,-65,156,-182,91,-13).
-
LinearRecurrence[{13,-65,156,-182,91,-13}, {2,4,13,52,221,949}, 30]
CoefficientList[Series[(2-22 x+91 x^2-169 x^3+130 x^4-26 x^5)/(1-13 x+ 65 x^2- 156 x^3+182 x^4-91 x^5+13 x^6),{x,0,40}],x] (* Harvey P. Dale, Jun 05 2021 *)
A211988
The Berndt-type sequence number 9 for the argument 2*Pi/13.
Original entry on oeis.org
0, -6, -37, 676, 2882, 12502, -196209, -856850, -3740697, 58876883, 257003504, 1121852777, -17656510365, -77073076671, -336434457597, 5295048110651, 23113603862267, 100894018986142, -1587942800101489, -6931585922526870, -30257313674299627, 476211413709501353
Offset: 0
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
A216540
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, 0, -1, -8, -45, -221.
Original entry on oeis.org
0, 0, -1, -8, -45, -221, -1014, -4472, -19227, -81224, -338767, -1399320, -5736705, -23377770, -94804944, -382930847, -1541565610, -6188513994, -24784429501, -99058333803, -395227906723, -1574536914951, -6264614281978, -24896955293210, -98848880984490
Offset: 1
We note that: s(2)^3 + s(5)^3 + s(6)^3 = 2*(s(2) + s(5) + s(6)), s(2)^5 + s(5)^5 + s(6)^5 = 5* sqrt((13 + 3*sqrt(13))/2) - sqrt((13 - 3*sqrt(13))/2).
- Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
- Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
-
LinearRecurrence[{13,-65,156,-182,91,-13}, {0,0,-1,-8,-45,-221}, 30]
A216508
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 6, 13, 39, 130, 455, 1638.
Original entry on oeis.org
6, 13, 39, 130, 455, 1638, 6006, 22308, 83655, 316030, 1200914, 4585308, 17577014, 67603887, 260757536, 1008258225, 3906958055, 15167837542, 58983478554, 229708325847, 895760071050, 3497141791455, 13667427167576, 53464307173927, 209315686335366, 820090746381088, 3215215287887889
Offset: 0
We have a(7)/2 + 2*A216597(7) = 26, 4*X(4) - X(6) = 13 + sqrt(13), 4*X(8) - X(10) = 91, 4*X(10) - X(12) = 13*(21 - sqrt(13)), 4*X(12) - X(14)= 78*(11 - sqrt(13)), 8*X(14) - 2*X(16) = 11*13*sqrt(13)*(3*sqrt(13) - 5) and X(6) - 10*X(2) = -6*sqrt(13) since 2*X(2) = 13 - sqrt(13), 2*X(4) = 39 - 5*sqrt(13), X(6) = 65 - 11*sqrt(13), 2*X(8) = 91*(5 - sqrt(13)), X(10) = 91*(9 - 2*sqrt(13)), X(12) = 3003 - 715*sqrt(13) = 13*(3*77 - 55*sqrt(13)), X(14) = 11154 - 2782*sqrt(13), 2*X(16) = 83655 - 21541*sqrt(13).
- Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
-
LinearRecurrence[{13,-65,156,-182,91,-13}, {6,13,39,130,455,1638}, 30]
A217548
The Berndt-type sequences number 7 for the argument 2*Pi/13.
Original entry on oeis.org
6, 7, -65, -295, -1303, 20631, 89967, 392616, -6178549, -26970688, -117731275, 1852943703, 8088348131, 35306734632, -555682818080, -2425630962790, -10588208505263, 166644858132571, -727427431532172, 3175319503526856, -49975467287014789
Offset: 0
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Cf.
A019698,
A216605,
A216486,
A216508,
A216597,
A216540,
A161905,
A216450,
A216801,
A216861,
A217548,
A217549,
A211988.
A217549
The Berndt-type sequence number 8 for the argument 2*Pi/13.
Original entry on oeis.org
0, -1, 21, 85, 365, -5707, -24935, -108872, 1713705, 7480420, 32652893, -513913649, -2243303605, -9792325686, 154118686736, 672748988550, 2936640671285, -46218967738367, -201752069488280, -880675175822422, 13860700755359325, 60503840705600655, 264107479466296733
Offset: 0
We have A(1) = A(-1) = sqrt((13-3*sqrt(13))/2), A(2) = (7-sqrt(13))/2, A(3) = (2*sqrt(13)-3)*sqrt((13-3*sqrt(13))/26), A(4) = (21-5*sqrt(13))/2, A(5) = ((13*sqrt(13)-37)/2)*sqrt((13-3*sqrt(13))/26), 2*sqrt(13)*A(6) = -295 + 85*sqrt(13), and 2*sqrt(13)*(A(6) - 4*A(4)) + 2*A(2) = -28. Furthermore it can be verified that -a(5)/13 - a(4) - a(3) = A217548(5)/13 + A217548(4) + A217548(3) = -11.
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
A218655
The Berndt-type sequence number 10 for the argument 2*Pi/13.
Original entry on oeis.org
2, 4, 13, -176, -786, -3452, 54483, 237722, 1037569, -16329149, -71279530, -311145495, 4897036897, 21376227709, 93310132523, -1468582101731, -6410560285891, -27982966049682, 440416091468393, 1922476035761802, 8391868916275609
Offset: 0
Let us put b(n) = A211988(n) + a(n)*sqrt(13). Then we get b(0) = 2*sqrt(13), b(1) = -6 + 4*sqrt(13), b(2) = -37 + 13*sqrt(13), b(3) = 676 - 176*sqrt(13), b(4) = 2882 - 786*sqrt(13), b(5) = 12502 - 3452*sqrt(13).
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Showing 1-7 of 7 results.
Comments