cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A186685 Total number of n-digit numbers requiring 19 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1, 6}, 100] (* Paolo Xausa, Jul 26 2024 *)

Formula

a(n) = A186684(n) - A186684(n-1).
A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + a(n) = A052268(n).
a(n) = 0 for n >= 4. - Nathaniel Johnston, May 09 2011

A186681 Total number of n-digit numbers requiring 17 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 3, 30, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + a(n) + A186683(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 6. - Nathaniel Johnston, May 09 2011

Crossrefs

Formula

a(n) = A186680(n) - A186680(n-1).

A186683 Total number of n-digit numbers requiring 18 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 2, 17, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + a(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 5. - Nathaniel Johnston, May 09 2011

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 2, 17, 5}, 100] (* Paolo Xausa, Jul 30 2024 *)

Formula

a(n) = A186682(n) - A186682(n-1).

A211988 The Berndt-type sequence number 9 for the argument 2*Pi/13.

Original entry on oeis.org

0, -6, -37, 676, 2882, 12502, -196209, -856850, -3740697, 58876883, 257003504, 1121852777, -17656510365, -77073076671, -336434457597, 5295048110651, 23113603862267, 100894018986142, -1587942800101489, -6931585922526870, -30257313674299627, 476211413709501353
Offset: 0

Views

Author

Roman Witula, Oct 25 2012

Keywords

Comments

a(n) + A218655(n)*sqrt(13) = A(2*n+1)*13^((1+floor(n/3))/2)*sqrt(2*(13 + 3*sqrt(13))/13), where A(n) is defined below.
The sequence A(n) from the name of a(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) := 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
It follows that A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0)=3, and A(1) = sqrt((13-3*sqrt(13))/2).
We note that s(1) + s(3) + s(9) = s(1)^(-1) + s(3)^(-1) + s(9)^(-1) = sqrt((13-3*sqrt(13))/2), sqrt(2*sqrt(13))*(s(1)^(-3) + s(3)^(-3) + s(9)^(-3)) = sqrt(97*sqrt(13)-339), and s(1)^(-9) + s(3)^(-9) + s(9)^(-9) = (131/13)*sqrt(2834 - 786*sqrt(13)).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in crossrefs are given.

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

A216540 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, 0, -1, -8, -45, -221.

Original entry on oeis.org

0, 0, -1, -8, -45, -221, -1014, -4472, -19227, -81224, -338767, -1399320, -5736705, -23377770, -94804944, -382930847, -1541565610, -6188513994, -24784429501, -99058333803, -395227906723, -1574536914951, -6264614281978, -24896955293210, -98848880984490
Offset: 1

Views

Author

Roman Witula, Sep 12 2012

Keywords

Comments

a(n) is equal to the rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2(13-3*sqrt(13)))*X(2*n-1)/13, where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2.
The Berndt-type sequence number 5 for the argument 2Pi/13 defined by the relation A161905(n) + a(n)*sqrt(13) = sqrt(2*(13-3*sqrt(13))/13)*X(2*n-1), where X(n) := s(2)^n + s(5)^n + s(6)^n, and s(j) := 2*sin(2*Pi*j/13), j=1,2,...,6.
It follows that s(2) + s(5) + s(6) = s(1)*s(3)*s(4) = sqrt((13 + 3*sqrt(13))/2) and s(2)*s(5)*s(6) = s(1) + s(3) - s(4) = sqrt((13 - 3*sqrt(13))/2).
a(n) is equal to the negated rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2(13+3*sqrt(13)))*Y(2*n-1)/13, where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. Moreover we have A161905(n) - a(n)*sqrt(13) = sqrt(2*(13+3*sqrt(13))/13)*Y(2*n-1) and Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)) - Roman Witula, Sep 22 2012

Examples

			We note that: s(2)^3 + s(5)^3 + s(6)^3 = 2*(s(2) + s(5) + s(6)),  s(2)^5 + s(5)^5 + s(6)^5 = 5* sqrt((13 + 3*sqrt(13))/2) - sqrt((13 - 3*sqrt(13))/2).
		

References

  • Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-65,156,-182,91,-13}, {0,0,-1,-8,-45,-221}, 30]

Formula

G.f.: -x^3*(2*x-1)*(3*x-1)/(13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Sep 23 2012

Extensions

Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025

A216597 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, -1, -5, -22, -91, -364.

Original entry on oeis.org

0, -1, -5, -22, -91, -364, -1430, -5564, -21541, -83200, -321100, -1239446, -4787770, -18514119, -71683040, -277913233, -1078918139, -4194134516, -16324764560, -63616690111, -248187382924, -969250588865, -3788814577730, -14823325196459, -58040165033110, -227415509487686
Offset: 0

Views

Author

Roman Witula, Sep 11 2012

Keywords

Comments

a(n) is equal to the rational part of 2*X(2*n)/sqrt(13) (with respect of the field Q(sqrt(13))), where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2.
The Berndt-type sequence number 4 for the argument 2Pi/13 defined by the relation A216508(n) + a(n)*sqrt(13) = 2*X(2*n), where X(n) := s(2)^n + s(5)^n + s(6)^n, where s(j) := 2*sin(2*Pi*j/13).
I observe that all numbers of the form (a(6*n + k + 4) - 4*a(6*n + k + 3))*13^(-n), where k = 1,...,6, n = 0,1,... are integers. For example we have a(10)-4*a(9)=900*13 and a(11)-4*a(10)=266*13^2.
We note that a(n) = -A050185(n) for n=0,1,...,5 and a(6) + A050185(6) = -2. - Roman Witula, Sep 22 2012
a(n) is equal to the negative rational part of 2*Y(2*n)/sqrt(13) (with respect of the field Q(sqrt(13))), where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. It can be proved that Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)), and 2*Y(2*n) = A216508(n) - a(n)*sqrt(13). - Roman Witula, Sep 24 2012

Examples

			We have s(2)^4 + s(5)^4 + s(6)^4 + sqrt(13) = s(2)^2 + s(5)^2 + s(6)^2 = (13 - sqrt(13))/2.
We note that 2*a(1) - a(2) = 1, 4*a(2) - a(3) = 2, 4*a(3) - a(4) = 3, 4*a(4) = a(5) and 4*a(n) - a(n+1) < 0 for every n = 5,6,...
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-65,156,-182,91,-13}, {0,-1,-5,-22,-91,-364}, 30]
  • PARI
    concat([0], Vec(-x*(13*x^4 -26*x^3 +22*x^2 -8*x +1) / (13*x^6 -91*x^5 +182*x^4 -156*x^3 +65*x^2 -13*x +1) + O(x^30))) \\ Andrew Howroyd, Feb 25 2018

Formula

G.f.: -x*(13*x^4 - 26*x^3 + 22*x^2 - 8*x + 1) / (13*x^6 - 91*x^5 + 182*x^4 - 156*x^3 + 65*x^2 - 13*x + 1). - Colin Barker, Jun 01 2013
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,n+k)*(k|13), where (k|13) represents the Legendre symbol. - Greg Dresden, Oct 09 2022

Extensions

Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025

A216508 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 6, 13, 39, 130, 455, 1638.

Original entry on oeis.org

6, 13, 39, 130, 455, 1638, 6006, 22308, 83655, 316030, 1200914, 4585308, 17577014, 67603887, 260757536, 1008258225, 3906958055, 15167837542, 58983478554, 229708325847, 895760071050, 3497141791455, 13667427167576, 53464307173927, 209315686335366, 820090746381088, 3215215287887889
Offset: 0

Views

Author

Roman Witula, Sep 11 2012

Keywords

Comments

a(n) is equal to the rational part of 2*X(2*n) (with respect to the field Q(sqrt(13))), where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2.
The Berndt-type sequence number 3 for the argument 2Pi/13 defined by the relation a(n) + A216597(n)*sqrt(13) = 2*X(2*n), where X(n) := s(2)^n + s(5)^n + s(6)^n, where s(j) := 2*sin(2*Pi*j/13).
We note that all numbers of the form a(6*n+k)*13^(-n), where k = 1,...,6, n = 0,1,... are integers, and even the number a(13)*13^(-4) is an integer.
a(n) is also equal to the rational part of 2*Y(2*n) (with respect to the field Q(sqrt(13))), where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. Moreover we can deduce the following decompositions:
2*Y(2*n) = a(n) - A216597(n)*sqrt(13) and Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)) - Roman Witula, Sep 22 2012

Examples

			We have a(7)/2 + 2*A216597(7) = 26, 4*X(4) - X(6) = 13 + sqrt(13), 4*X(8) - X(10) = 91, 4*X(10) - X(12) = 13*(21 - sqrt(13)), 4*X(12) - X(14)= 78*(11 - sqrt(13)), 8*X(14) - 2*X(16) = 11*13*sqrt(13)*(3*sqrt(13) - 5) and X(6) - 10*X(2) = -6*sqrt(13) since 2*X(2) = 13 - sqrt(13), 2*X(4) = 39 - 5*sqrt(13), X(6) = 65 - 11*sqrt(13), 2*X(8) = 91*(5 - sqrt(13)), X(10) = 91*(9 - 2*sqrt(13)), X(12) = 3003 - 715*sqrt(13) = 13*(3*77 - 55*sqrt(13)), X(14) = 11154 - 2782*sqrt(13), 2*X(16) = 83655 - 21541*sqrt(13).
		

References

  • Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-65,156,-182,91,-13}, {6,13,39,130,455,1638}, 30]

Formula

G.f.: -(91*x^5-364*x^4+468*x^3-260*x^2+65*x-6) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013

Extensions

Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025

A216801 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).

Original entry on oeis.org

2, -22, -117, -468, -1755, -6513, -24336, -91988, -351689, -1357408, -5277363, -20625774, -80909257, -318173258, -1253243498, -4941450657, -19495914360, -76945654032, -303737001009, -1199041027587, -4733273752831, -18683644465447, -73743457866962
Offset: 1

Views

Author

Roman Witula, Sep 17 2012

Keywords

Comments

a(n) is equal to the rational part of the number sqrt(2*(13 + 3*sqrt(13))/13)*X(2*n-1), where X(n) = sqrt((13 -3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13 + 3*sqrt(13))/2)*X(n-3), with X(0) = 3, X(1) = sqrt((13 - 3*sqrt(13))/2), and X(2) = -(13 + sqrt(13))/2.
Let us observe that all numbers of the form a(n)*13^(-floor((n+3)/6)) are integers.
We note that the sequence X(n) is defined "similarly" to sequence Y(n) in the comments to A216540. The only difference between them is in initial condition: X(2) = -Y(2).

Examples

			We have 4*a(3)=a(4), 4*a(4)=a(5)+a(3). The 3-valuation of a(n) for n=1,...,10 is contained in A167366. Moreover it can be obtained X(7) - 22*X(3) = 4*sqrt(2*(13-3*sqrt(13))), 4*X(5) - X(7) = 2*sqrt(26(13-3*sqrt(13))), and 15*X(5) - X(9) = 20*sqrt(26(13-3*sqrt(13))), which implies (15*X(5) - X(9))/(4*X(5) - X(7)) = 10.
		

References

  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, -65, 156, -182, 91, -13}, {2, -22, -117, -468, -1755, -6513}, 25] (* Paolo Xausa, Feb 23 2024 *)

Formula

G.f.: -x*(52*x^5-520*x^4+689*x^3-299*x^2+48*x-2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013

A217548 The Berndt-type sequences number 7 for the argument 2*Pi/13.

Original entry on oeis.org

6, 7, -65, -295, -1303, 20631, 89967, 392616, -6178549, -26970688, -117731275, 1852943703, 8088348131, 35306734632, -555682818080, -2425630962790, -10588208505263, 166644858132571, -727427431532172, 3175319503526856, -49975467287014789
Offset: 0

Views

Author

Roman Witula, Oct 06 2012

Keywords

Comments

a(n) is the rational component (with respect to the field Q(sqrt(13))) of the number A(2*n)*2*13^(floor((n+1)/3)/2), where A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0)=3, and A(1) = sqrt((13-3*sqrt(13))/2).
The basic sequence A(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) = 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
We note that s(1) + s(3) + s(9) = s(1)^(-1) + s(3)^(-1) + s(9)^(-1) = sqrt((13-3*sqrt(13))/2).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in crossrefs are given.

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

A216861 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, -2, -9, -44, -215, -1001.

Original entry on oeis.org

0, -2, -9, -44, -215, -1001, -4446, -19058, -79677, -327418, -1329601, -5355272, -21446945, -85548138, -340268656, -1350664731, -5353389340, -21195056584, -83846301409, -331483318257, -1309872510973, -5174049465897, -20431456722794, -80660347594658
Offset: 1

Views

Author

Roman Witula, Sep 18 2012

Keywords

Comments

a(n) is equal to the rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2*(13 + 3*sqrt(13)))*X(2*n-1)/13, where X(n) = sqrt((13-3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13+3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13-3*sqrt(13))/2), and X(2)=-(13+sqrt(13))/2.
The sequence X(n) is defined in almost the same way as sequence Y(n) from the comments to A161905. The only difference is in the initial condition X(2) = -Y(2).

Examples

			We have a(3)-5*a(2)=a(4)-5a(3)=1, a(5)-5*a(4)=5, and 19000 + a(8) = a(4) + 2*a(3) - 2*a(2).
		

References

  • Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, -65, 156, -182, 91, -13}, {0, -2, -9, -44, -215, -1001}, 25] (* Paolo Xausa, Feb 23 2024 *)

Formula

G.f.: -x^2*(26*x^4-84*x^3+57*x^2-17*x+2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013

Extensions

Name clarified by Robert C. Lyons, Feb 08 2025
Showing 1-10 of 12 results. Next