A216870 A maximal length five arithmetic progression of squares in a quadratic number field.
49, 169, 289, 409, 529
Offset: 1
Examples
a(n) = 7^2, 13^2, 17^2, sqrt(409)^2, 23^2 for n = 1, 2, 3, 4, 5.
Links
- A. Bremner, Arithmetic progressions of squares in cubic fields, Abstract 2012.
- X. Xarles, Squares in arithmetic progression over number fields, arXiv:0909.1642 [math.AG], 2009.
- X. Xarles, Squares in arithmetic progression over number fields, J. Number Theory, 132 (2012), 379-389.
Programs
-
Mathematica
NestList[120+#&,49,4] (* Harvey P. Dale, Apr 20 2013 *)
Formula
a(n+1) - a(n) = 120 for n = 1, 2, 3, 4.
Comments