A216871 16k^2-16k-4 interleaved with 16k^2+4 for k>=0.
-4, 4, -4, 20, 28, 68, 92, 148, 188, 260, 316, 404, 476, 580, 668, 788, 892, 1028, 1148, 1300, 1436, 1604, 1756, 1940, 2108, 2308, 2492, 2708, 2908, 3140, 3356, 3604, 3836, 4100, 4348, 4628, 4892, 5188, 5468, 5780, 6076, 6404, 6716, 7060, 7388, 7748, 8092
Offset: 0
Links
- Eddie Gutierrez New Interleaved Sequences Part C on oddwheel.com, Section B1 Line No. 23 (square_sequencesIII.html) Part C
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
&cat[[16*k^2-16*k-4, 16*k^2+4]: k in [0..23]]; // Bruno Berselli, Sep 27 2012
-
Mathematica
Flatten[Table[{16 n^2 - 16 n - 4, 16 n^2 + 4}, {n, 0, 23}]] (* Bruno Berselli, Sep 26 2012 *) LinearRecurrence[{2,0,-2,1},{-4,4,-4,20},50] (* Harvey P. Dale, Dec 09 2015 *)
-
PARI
vector(47, n, k=(n-1)\2; if(n%2, 16*k^2-16*k-4, 16*k^2+4)) \\ Bruno Berselli, Sep 28 2012
Formula
Contribution from Bruno Berselli, Sep 27 2012: (Start)
G.f.: -4*(1-3*x+3*x^2-5*x^3)/((1+x)*(1-x)^3).
a(n) = 2*(2*n*(n-2)-3*(-1)^n+1).
Extensions
Definition rewritten by Bruno Berselli, Oct 25 2012
Comments