A216898 a(n) = smallest number k such that both k - n^2 and k + n^2 are primes.
2, 4, 7, 14, 21, 28, 43, 52, 67, 86, 111, 150, 149, 180, 201, 232, 267, 312, 329, 366, 411, 446, 487, 532, 587, 654, 705, 742, 787, 852, 911, 972, 1029, 1118, 1185, 1242, 1313, 1372, 1473, 1528, 1603, 1692, 1769, 1852, 1941, 2032, 2127, 2212, 2317, 2412, 2503
Offset: 0
Keywords
Examples
a(11) = 150 because both 150 - 11^2 = 29 and 150 + 11^2 = 271 are primes. a(12) = 149 because both 149 - 12^2 = 5 and 149 + 12^2 = 293 are primes.
Links
- Zak Seidov, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A087711.
Programs
-
Mathematica
Table[If[n < 1, 2, m = n^2 + 1; While[!PrimeQ[m - n^2] || !PrimeQ[m + n^2], m = m + 2]; m], {n, 0, 100}]
Comments