A216914 The Gauss factorial N_n! restricted to prime factors for N >= 0, n >= 1, square array read by antidiagonals.
1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 6, 3, 2, 1, 1, 30, 3, 2, 1, 1, 1, 30, 15, 2, 3, 2, 1, 1, 210, 15, 10, 3, 6, 1, 1, 1, 210, 105, 10, 15, 6, 1, 2, 1, 1, 210, 105, 70, 15, 6, 1, 6, 1, 1, 1, 210, 105, 70, 105, 6, 5, 6, 3, 2, 1, 1, 2310, 105, 70, 105, 42, 5, 30, 3, 2
Offset: 1
Examples
[n\N][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ----------------------------------------------- [ 1] 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210 [ 2] 1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105 [ 3] 1, 1, 2, 2, 2, 10, 10, 70, 70, 70, 70 [ 4] 1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105 [ 5] 1, 1, 2, 6, 6, 6, 6, 42, 42, 42, 42 [ 6] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [ 7] 1, 1, 2, 6, 6, 30, 30, 30, 30, 30, 30 [ 8] 1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105 [ 9] 1, 1, 2, 2, 2, 10, 10, 70, 70, 70, 70 [10] 1, 1, 1, 3, 3, 3, 3, 21, 21, 21, 21 [11] 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210 [12] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [13] 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210
Crossrefs
Cf. A034386(n) = n# = Gauss_primorial(n, 1).
The compressed version of the primorial eliminates all duplicates.
Cf. A002110(n) = compressed(Gauss_primorial(n, 1)).
Cf. A070826(n) = compressed(Gauss_primorial(n, 2)).
Cf. A007947(n) = Gauss_primorial(1*n, 1)/Gauss_primorial(1*n, 1*n).
Cf. A204455(n) = Gauss_primorial(2*n, 2)/Gauss_primorial(2*n, 2*n).
Cf. A216913(n) = Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n).
Programs
-
Mathematica
(* k stands for N *) T[n_, k_] := Product[If[GCD[j, n] == 1 && PrimeQ[j], j, 1], {j, 1, k}]; Table[T[n - k, k], {n, 1, 12}, {k, n - 1, 0, -1}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
Sage
def Gauss_primorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j)) for n in (1..13): [Gauss_primorial(N,n) for N in (1..10)]
Formula
N_n# = product_{1<=j<=N, GCD(j, n) = 1, j is prime} j.
Comments