A216918 Odd numbers with at least 3 distinct prime factors.
105, 165, 195, 231, 255, 273, 285, 315, 345, 357, 385, 399, 429, 435, 455, 465, 483, 495, 525, 555, 561, 585, 595, 609, 615, 627, 645, 651, 663, 665, 693, 705, 715, 735, 741, 759, 765, 777, 795, 805, 819, 825, 855, 861, 885, 897, 903, 915, 935, 945, 957, 969
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- J. B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008), p.11.
Crossrefs
A278569 is a subsequence.
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 2+ `if`(n=1, 103, a(n-1)) by 2 while nops(numtheory[factorset](k))<=2 do od; k end: seq (a(n), n=1..100); # Alois P. Heinz, Oct 03 2012
-
Mathematica
Select[Range[1, 999, 2], (PrimeNu[#] >= 3)&] (* Jean-François Alcover, Feb 27 2014 *)
-
Sage
def is_A216918(n): if n % 2 == 0: return False return len(n.prime_divisors()) >= 3 def A216918_list(n): return [k for k in srange(1, n + 1, 2) if is_A216918(k)] A216918_list(969)
Formula
Gauss_factorial(floor(a(n)/2), a(n)) == 1 (mod a(n)). (Cf. A216919)
Comments