A216919 The Gauss factorial N_n! for N >= 0, n >= 1, square array read by antidiagonals.
1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 15, 40, 3, 6, 1, 1, 1, 40320, 105, 40, 15, 24, 1, 2, 1, 1, 362880, 105, 280, 15, 24, 1, 6, 1, 1, 1, 3628800, 945, 2240, 105, 144, 5, 24, 3, 2, 1, 1, 39916800, 945
Offset: 1
Examples
[n\N][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ------------------------------------------------------------ [ 1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142] [ 2] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945 [A055634, A133221] [ 3] 1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400 [A232980] [ 4] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945 [ 5] 1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576 [A232981] [ 6] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [A232982] [ 7] 1, 1, 2, 6, 24, 120, 720, 720, 5760, 51840, 518400 [A232983] [ 8] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945 [ 9] 1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400 [ 10] 1, 1, 1, 3, 3, 3, 3, 21, 21, 189, 189 [A232984] [ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985] [ 12] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- J. B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008).
- J. B. Cosgrave, K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, Vol. 118, No. 9 (2011), 812-829.
- K. Dilcher, Gauss Factorials: Properties and Applications. Video by the Irmacs Centre, May 18, 2011.
Crossrefs
A000142(n) = n! = Gauss_factorial(n, 1).
A001147(n) = Gauss_factorial(2*n, 2).
A055634(n) = Gauss_factorial(n, 2)*(-1)^n.
A001783(n) = Gauss_factorial(n, n).
A124441(n) = Gauss_factorial(floor(n/2), n).
A124442(n) = Gauss_factorial(n, n)/Gauss_factorial(floor(n/2), n).
A066570(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n).
Programs
-
Maple
A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N): seq(seq(A(n, d-n), n=1..d), d=1..12); # Alois P. Heinz, Oct 03 2012
-
Mathematica
GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
-
PARI
T(m,n)=prod(k=2, m, if(gcd(k,n)==1, k, 1)) for(s=1,10,for(n=1,s,print1(T(s-n,n)", "))) \\ Charles R Greathouse IV, Oct 01 2012
-
Sage
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]
Formula
N_n! = product_{1<=j<=N, GCD(j,n)=1} j.
Comments