cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216919 The Gauss factorial N_n! for N >= 0, n >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 15, 40, 3, 6, 1, 1, 1, 40320, 105, 40, 15, 24, 1, 2, 1, 1, 362880, 105, 280, 15, 24, 1, 6, 1, 1, 1, 3628800, 945, 2240, 105, 144, 5, 24, 3, 2, 1, 1, 39916800, 945
Offset: 1

Views

Author

Peter Luschny, Oct 01 2012

Keywords

Comments

The term is due to Cosgrave & Dilcher. The Gauss factorial should not be confused with the q-factorial [n]_q! which is also called Gaussian factorial.

Examples

			[n\N][0, 1, 2, 3,  4,   5,   6,    7,     8,      9,     10]
------------------------------------------------------------
[  1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142]
[  2] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945 [A055634, A133221]
[  3] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400 [A232980]
[  4] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945
[  5] 1, 1, 2, 6, 24,  24, 144, 1008,  8064,  72576,   72576 [A232981]
[  6] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35 [A232982]
[  7] 1, 1, 2, 6, 24, 120, 720,  720,  5760,  51840,  518400 [A232983]
[  8] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945
[  9] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400
[ 10] 1, 1, 1, 3,  3,   3,   3,   21,    21,    189,     189 [A232984]
[ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985]
[ 12] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35
[ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
		

Crossrefs

A000142(n) = n! = Gauss_factorial(n, 1).
A001147(n) = Gauss_factorial(2*n, 2).
A055634(n) = Gauss_factorial(n, 2)*(-1)^n.
A001783(n) = Gauss_factorial(n, n).
A124441(n) = Gauss_factorial(floor(n/2), n).
A124442(n) = Gauss_factorial(n, n)/Gauss_factorial(floor(n/2), n).
A066570(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n).

Programs

  • Maple
    A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N):
    seq(seq(A(n, d-n), n=1..d), d=1..12);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
  • PARI
    T(m,n)=prod(k=2, m, if(gcd(k,n)==1, k, 1))
    for(s=1,10,for(n=1,s,print1(T(s-n,n)", "))) \\ Charles R Greathouse IV, Oct 01 2012
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]
    

Formula

N_n! = product_{1<=j<=N, GCD(j,n)=1} j.