A216924 Consecutive Pythagorean primes p = A002144(r) and q = A002144(r+1) such that q - p > log(p)^2. The number a(n) is the n-th value of p.
5, 17, 113, 197, 461, 881, 1493, 1801, 39581, 50593, 78989, 180797, 183089, 241601, 250501, 268297, 339841, 485209, 492421, 618637, 919421, 1264337, 1561829, 1637813, 1994101, 2116129, 2191633, 2243909, 2314373, 3254929, 3422917, 3440621, 4468889, 4855297, 4874717, 5059321, 5526613, 6118769, 7856441, 9199153
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t = {}; p = 5; Do[While[q = p; While[p = NextPrime[p]; Mod[p, 4] == 3]; p - q < Log[q]^2]; AppendTo[t, q], {25}]; t (* T. D. Noe, Sep 21 2012 *)
-
PARI
r=1;v=List();p=5;forprime(q=11,1e7,if(q%4>1,next);if(q-p>r, r=log(p)^2\1; if(q-p>r,print1(p", ");listput(v,p)));p=q); Vec(v) \\ Charles R Greathouse IV, Sep 21 2012
Extensions
a(22)-a(40) from Charles R Greathouse IV, Sep 21 2012