A216962 Triangle read by rows, arising in enumeration of permutations by cyclic peaks.
1, 2, 5, 1, 15, 9, 52, 63, 5, 203, 416, 101, 877, 2741, 1361, 61, 4140, 18425, 15602, 2153, 21147, 127603, 165786, 46959, 1385, 115975, 914508, 1700220, 823256, 74841, 678570, 6794508, 17200589, 12802659, 2389953, 50521, 4213597, 52354116, 173871641, 185499899, 59207070, 3855277
Offset: 1
Examples
Triangle begins: 1 2 5,1 15,9 52,63,5 203,416,101 877,2741,1361,61 ...
Links
- Shi-Mei Ma and Chak-On Chow, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264, 2012
Crossrefs
First column is A000110.
Programs
-
Mathematica
P[1] := x y; P[n_] := P[n] = ((n-1)q + x y) P[n-1] + 2q(1-q) D[P[n-1], q] + x(1-q) D[P[n-1], x] + (1-y) D[P[n-1], y] // Simplify; row[n_] := CoefficientList[P[n] /. {x -> 1, y -> 1}, q]; Array[row, 12] // Flatten (* Jean-François Alcover, Sep 25 2018 *)
-
PARI
tabf(m) = {P = x; for (n=1, m, M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = (n*q+x)*P + 2*q*(1-q)*deriv(P, q)+ x*(1-q)*deriv(P,x););} \\ Michel Marcus, Feb 08 2013
Extensions
More terms from Michel Marcus, Feb 08 2013
Comments