A217044 Primes that remain prime when a single "2" digit is inserted between any two adjacent decimal digits.
17, 23, 29, 41, 53, 83, 89, 101, 113, 131, 137, 149, 251, 359, 401, 419, 443, 461, 647, 719, 797, 821, 863, 941, 1289, 1823, 2111, 2543, 3323, 3413, 4013, 4463, 4751, 5021, 5501, 5807, 6299, 6827, 7229, 7643, 7883, 8039, 8219, 8609, 8837, 9221, 9227, 9461, 9623
Offset: 1
Examples
9461 is prime and also 94621, 94261, 92461.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..500 (first 123 terms from Paolo Lava)
Crossrefs
Programs
-
Magma
[p: p in PrimesInInterval(11, 10000) | forall{m: t in [1..#Intseq(p)-1] | IsPrime(m) where m is (Floor(p/10^t)*10+2)*10^t+p mod 10^t}]; // Bruno Berselli, Sep 26 2012
-
Maple
with(numtheory); A217044:=proc(q,x) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A217044(100000,2)
-
Mathematica
Select[Prime[Range[5,1200]],And@@PrimeQ[FromDigits/@Table[ Insert[ IntegerDigits[ #],2,i],{i,2,IntegerLength[#]}]]&] (* Harvey P. Dale, Oct 09 2012 *)
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=2; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012