A217046 Primes that remain prime when a single "6" digit is inserted between any two adjacent decimal digits.
13, 17, 23, 29, 37, 41, 43, 47, 53, 59, 61, 71, 79, 83, 97, 101, 109, 113, 137, 157, 163, 167, 263, 277, 293, 307, 313, 317, 331, 397, 421, 443, 457, 463, 569, 607, 653, 659, 661, 673, 691, 739, 769, 787, 809, 823, 829, 863, 881, 977, 997, 1063, 1087, 1453
Offset: 1
Examples
185917 is prime and also 1859167, 1859617, 1856917, 1865917 and 1685917.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500 (First 262 terms from Paolo P. Lava)
Crossrefs
Programs
-
Maple
with(numtheory); A217044:=proc(q,x) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A217044(100000,6)
-
Mathematica
Select[Prime[Range[5,1200]],And@@PrimeQ[FromDigits/@Table[ Insert[ IntegerDigits[ #],6,i],{i,2,IntegerLength[#]}]]&] (* Harvey P. Dale, Oct 09 2012 *)
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=6; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012