A217047 Primes that remain prime when a single "8" digit is inserted between any two adjacent digits.
11, 23, 47, 83, 131, 173, 179, 233, 353, 389, 521, 569, 641, 683, 839, 887, 911, 971, 983, 1229, 1289, 1913, 2087, 2663, 2837, 2879, 3329, 3671, 3677, 3803, 3821, 4259, 4409, 4817, 4871, 4889, 5237, 5477, 5693, 6449, 6581, 6863, 7283, 7487, 7583, 7823, 7853
Offset: 1
Examples
325421 is prime and also 3254281, 3254821, 3258421, 3285421 and 3825421.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Magma
[p: p in PrimesInInterval(11,8000) | forall{m: t in [1..#Intseq(p)-1] | IsPrime(m) where m is (Floor(p/10^t)*10+8)*10^t+p mod 10^t}]; // Bruno Berselli, Sep 26 2012
-
Maple
A217044:=proc(q,x) local a,b,c,d,i,k,n,ok,v; v:=[]; a:=10; for n from 1 to q do a:=nextprime(a); d:=length(a); ok:=1; for k from 1 to d-1 do b:=a mod 10^k; c:=trunc(a/10^k); i:=x*10^k+b; i:=c*10^length(i)+i; if not isprime(i) then ok:=0; break; fi; od; if ok=1 then v:=[op(v),a]; fi; od; op(v); end: A217044(10^3,8);
-
PARI
is(n)=my(v=concat([""],digits(n)));for(i=2,#v-1,v[1]=Str(v[1], v[i]); v[i]=8;if(i>2,v[i-1]="");if(!isprime(eval(concat(v))), return(0)));isprime(n) \\ Charles R Greathouse IV, Sep 25 2012
-
Python
from sympy import isprime, primerange def ok(p): if p < 10: return False s = str(p) return all(isprime(int(s[:i] + "8" + s[i:])) for i in range(1, len(s))) def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)] print(aupto(7854)) # Michael S. Branicky, Nov 23 2021
Comments