cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217047 Primes that remain prime when a single "8" digit is inserted between any two adjacent digits.

Original entry on oeis.org

11, 23, 47, 83, 131, 173, 179, 233, 353, 389, 521, 569, 641, 683, 839, 887, 911, 971, 983, 1229, 1289, 1913, 2087, 2663, 2837, 2879, 3329, 3671, 3677, 3803, 3821, 4259, 4409, 4817, 4871, 4889, 5237, 5477, 5693, 6449, 6581, 6863, 7283, 7487, 7583, 7823, 7853
Offset: 1

Views

Author

Paolo P. Lava, Sep 25 2012

Keywords

Comments

These numbers are either isolated primes or the smaller of a pair of twin primes. - Davide Rotondo, Mar 11 2025

Examples

			325421 is prime and also 3254281, 3254821, 3258421, 3285421 and 3825421.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(11,8000) | forall{m: t in [1..#Intseq(p)-1] | IsPrime(m) where m is (Floor(p/10^t)*10+8)*10^t+p mod 10^t}]; // Bruno Berselli, Sep 26 2012
    
  • Maple
    A217044:=proc(q,x) local a,b,c,d,i,k,n,ok,v; v:=[]; a:=10;
    for n from 1 to q do a:=nextprime(a); d:=length(a); ok:=1;
    for k from 1 to d-1 do b:=a mod 10^k; c:=trunc(a/10^k); i:=x*10^k+b; i:=c*10^length(i)+i;
    if not isprime(i) then ok:=0; break; fi; od; if ok=1 then v:=[op(v),a]; fi; od; op(v); end:
    A217044(10^3,8);
  • PARI
    is(n)=my(v=concat([""],digits(n)));for(i=2,#v-1,v[1]=Str(v[1], v[i]); v[i]=8;if(i>2,v[i-1]="");if(!isprime(eval(concat(v))), return(0)));isprime(n) \\ Charles R Greathouse IV, Sep 25 2012
    
  • Python
    from sympy import isprime, primerange
    def ok(p):
        if p < 10: return False
        s = str(p)
        return all(isprime(int(s[:i] + "8" + s[i:])) for i in range(1, len(s)))
    def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
    print(aupto(7854)) # Michael S. Branicky, Nov 23 2021