cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217048 Semiprimes using only the curved digits 0, 3, 6, 8 and 9.

Original entry on oeis.org

6, 9, 33, 38, 39, 69, 86, 93, 303, 309, 339, 386, 393, 398, 633, 669, 689, 698, 699, 803, 838, 866, 869, 886, 889, 893, 898, 899, 933, 939, 989, 993, 998, 3039, 3063, 3086, 3093, 3098, 3099, 3309, 3338, 3369, 3383, 3386, 3398, 3603, 3639, 3669, 3683, 3693
Offset: 1

Views

Author

Jonathan Vos Post, Sep 25 2012

Keywords

Comments

This is to A079652 as semiprimes A001358 are to primes A000040.

Examples

			a(41) = 3338 = 2 * 1669, the 938th semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..3700] | IsSemiprime(n) and Intseq(n) subset [0,3,6,8,9]]; // Bruno Berselli, Sep 25 2012
  • Maple
    R:= [0,3,6,8,9]:
    Res:= NULL: count:= 0:
    for m from 1 while count < 100 do
      L:= convert(m,base,5);
      n:= add(R[L[i]+1]*10^(i-1),i=1..nops(L));
      if numtheory:-bigomega(n)=2 then Res:= Res, n; count:= count+1 fi
    od:
    Res; # Robert Israel, Feb 16 2020

Formula

A001358 INTERSECTION A072960.