A217059 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 5) with t_0 = t_1 = ... = t_{j-1} = 2.
22, 32, 43, 44, 50, 55, 61, 65, 70
Offset: 0
Examples
w(2;3,5)=22, w(3;2,3,5)=32, w(4;2,2,3,5)=43, and so on...
References
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
Links
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, On computation of exact van der Waerden numbers, Integers: Electronic Journal of Combinatorial Number Theory, 11 (2011), A71.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
Extensions
a(8) = 70 from Tanbir Ahmed, Mar 11 2013