cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tanbir Ahmed

Tanbir Ahmed's wiki page.

Tanbir Ahmed has authored 12 sequences. Here are the ten most recent ones:

A217236 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 4, 5) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

55, 71, 75, 79
Offset: 0

Author

Tanbir Ahmed, Sep 28 2012

Keywords

Examples

			w(2;4,5)=55, w(3; 2, 4, 5)=71, and so on...
		

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

A217237 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 4, 6) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

73, 83, 93, 101
Offset: 0

Author

Tanbir Ahmed, Sep 28 2012

Keywords

Examples

			w(2;4,6)=73, w(3;2,4,6)=83, and so on...
		

A217235 Van der Waerden numbers w(3; 3, 3, n).

Original entry on oeis.org

27, 51, 80, 107
Offset: 3

Author

Tanbir Ahmed, Sep 28 2012

Keywords

Examples

			w(3; 3, 3, 3)=27, w(3; 3, 3, 4) = 51, and so on...
		

References

  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

Crossrefs

A217060 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 6) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

32, 40, 48, 56, 60, 65, 71
Offset: 0

Author

Tanbir Ahmed, Sep 25 2012

Keywords

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

Extensions

a(6)=71 added by Tanbir Ahmed, Dec 07 2012

A217059 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 5) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

22, 32, 43, 44, 50, 55, 61, 65, 70
Offset: 0

Author

Tanbir Ahmed, Sep 25 2012

Keywords

Examples

			w(2;3,5)=22, w(3;2,3,5)=32, w(4;2,2,3,5)=43, and so on...
		

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

Extensions

a(8) = 70 from Tanbir Ahmed, Mar 11 2013

A217058 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 4) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

18, 21, 25, 29, 33, 36, 40, 42, 45, 48, 52, 55
Offset: 0

Author

Tanbir Ahmed, Sep 25 2012

Keywords

Examples

			w(2;3,4)=18, w(3;2,3,4)=21, w(4;2,2,3,4)=25, and so on...
		

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

Extensions

a(11)=55 added by Tanbir Ahmed, Dec 07 2012

A217037 Van der Waerden numbers w(2;5,n).

Original entry on oeis.org

178, 206, 260
Offset: 5

Author

Tanbir Ahmed, Sep 24 2012

Keywords

Comments

w(2;5,5)=178 (Stevens and Shantaram, 1978),w(2;5,6)=206 (Kouril, 2006), and w(2;5,7)=260 (Ahmed).

Examples

			w(2;5,5)=178.
		

References

  • M. Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation, Ph. D. Thesis, University of Cincinnati, Engineering: Computer Science and Engineering, 2006.

Crossrefs

A217007 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 4, 4) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

35, 40, 53, 54, 56, 66, 67
Offset: 0

Author

Tanbir Ahmed, Sep 23 2012

Keywords

Examples

			w(2;4,4)=35, w(3;2,4,4)=40, w(4:2,2,4,4)=53, and so on...
		

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

A217008 Van der Waerden numbers w(j+3; t_0,t_1,...,t_{j-1}, 3, 3, 3) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

27, 40, 41, 42, 45, 49, 52
Offset: 0

Author

Tanbir Ahmed, Sep 23 2012

Keywords

Examples

			w(3;3,3,3)=27, w(4;2,3,3,3)=40, w(5;2,2,3,3,3)=41, and so on...
		

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

Extensions

a(6)=52 added by Tanbir Ahmed, Dec 07 2012

A217005 Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 3) with t_0 = t_1 = ... = t_{j-1} = 2.

Original entry on oeis.org

9, 14, 17, 20, 21, 24, 25, 28, 31, 33, 35, 37, 39, 42, 44, 46, 48, 50, 51
Offset: 0

Author

Tanbir Ahmed, Sep 22 2012

Keywords

Examples

			w(2;3,3)=9, w(3;2,3,3)=14, w(4;2,2,3,3)=17, and so on...
		

References

  • T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
  • V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

Extensions

a(17)=50 and a(18)=51 added by Tanbir Ahmed, Dec 07 2012