Tanbir Ahmed has authored 12 sequences. Here are the ten most recent ones:
A217236
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 4, 5) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
w(2;4,5)=55, w(3; 2, 4, 5)=71, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
A217237
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 4, 6) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
73, 83, 93, 101
Offset: 0
w(2;4,6)=73, w(3;2,4,6)=83, and so on...
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- M. D. Beeler and P. E. O'Neil, Some new Van der Waerden numbers, Discrete Math., 28 (1979), 135-146.
- Michal Kouril, Computing the van der Waerden number W(3,4)=293, INTEGERS 12 (2012), A46.
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A217235
Van der Waerden numbers w(3; 3, 3, n).
Original entry on oeis.org
27, 51, 80, 107
Offset: 3
w(3; 3, 3, 3)=27, w(3; 3, 3, 4) = 51, and so on...
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- Tanbir Ahmed, On computation of exact van der Waerden numbers, Integers: Electronic Journal of Combinatorial Number Theory, 11 (2011), A71.
- M. D. Beeler and P. E. O'Neil, Some new Van der Waerden numbers, Discrete Math., 28 (1979), 135-146.
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A217060
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 6) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
32, 40, 48, 56, 60, 65, 71
Offset: 0
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A217059
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 5) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
22, 32, 43, 44, 50, 55, 61, 65, 70
Offset: 0
w(2;3,5)=22, w(3;2,3,5)=32, w(4;2,2,3,5)=43, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, On computation of exact van der Waerden numbers, Integers: Electronic Journal of Combinatorial Number Theory, 11 (2011), A71.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
A217058
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 4) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
18, 21, 25, 29, 33, 36, 40, 42, 45, 48, 52, 55
Offset: 0
w(2;3,4)=18, w(3;2,3,4)=21, w(4;2,2,3,4)=25, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, On computation of exact van der Waerden numbers, Integers: Electronic Journal of Combinatorial Number Theory, 11 (2011), A71.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
A217037
Van der Waerden numbers w(2;5,n).
Original entry on oeis.org
- M. Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation, Ph. D. Thesis, University of Cincinnati, Engineering: Computer Science and Engineering, 2006.
A217007
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 4, 4) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
35, 40, 53, 54, 56, 66, 67
Offset: 0
w(2;4,4)=35, w(3;2,4,4)=40, w(4:2,2,4,4)=53, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
A217008
Van der Waerden numbers w(j+3; t_0,t_1,...,t_{j-1}, 3, 3, 3) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
27, 40, 41, 42, 45, 49, 52
Offset: 0
w(3;3,3,3)=27, w(4;2,3,3,3)=40, w(5;2,2,3,3,3)=41, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A217005
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 3) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
9, 14, 17, 20, 21, 24, 25, 28, 31, 33, 35, 37, 39, 42, 44, 46, 48, 50, 51
Offset: 0
w(2;3,3)=9, w(3;2,3,3)=14, w(4;2,2,3,3)=17, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
Comments