cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217061 Expansion of e.g.f. exp(A006351(x)).

Original entry on oeis.org

1, 1, 3, 15, 109, 1053, 12767, 186763, 3204313, 63128665, 1404963387, 34867190823, 954800951749, 28600649870133, 930325531322519, 32658109219519843, 1230609634110271921, 49545182501048868145, 2122562841050605554291, 96411483206025310956735, 4628163318874435745244445
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4*ProductLog[-E^((x-1)/2)/2]^2/E^x,{x, 0, 15}], x]*Range[0, 15]! (* Vaclav Kotesovec, Aug 04 2014 *)
  • Maxima
    a(n):=(sum((m*sum((n+k-1)!*sum(1/(k-j)!*sum((2^(j-l)*(-1)^(l+j)*stirling1(n-m-l+j,j-l))/(l!*(n-m-l+j)!),l,0,j),j,0,k),k,0,n-m))/m!,m,1,n));
    
  • PARI
    my(x='x+O('x^20)); apply(round, Vec(serlaplace(4*lambertw(-exp((x-1)/2)/2)^2 / exp(x)))) \\ Michel Marcus, Jan 27 2025

Formula

a(n) = sum(m=1..n, (sum(k=0..n-m, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, (2^(j-l)*(-1)^(l+j)*Stirling1(n-m-l+j,j-l))/(l!*(n-m-l+j)!)))))/(m-1)!), n>0, a(0)=1.
From Vaclav Kotesovec, Aug 04 2014: (Start)
E.g.f.: 4*LambertW(-exp((x-1)/2)/2)^2 / exp(x).
a(n) ~ sqrt(2) * n^(n-1) / (exp(n-1) * (2*log(2)-1)^(n-1/2)). (End)

Extensions

More terms from Michel Marcus, Jan 27 2025