A217063 Primes that remain prime when a single "3" digit is inserted between any two adjacent decimal digits.
11, 17, 19, 23, 29, 31, 37, 41, 43, 61, 73, 79, 89, 97, 101, 103, 127, 167, 173, 181, 211, 233, 239, 251, 271, 283, 307, 331, 359, 373, 439, 491, 509, 523, 547, 599, 673, 709, 733, 769, 877, 887, 937, 941, 991, 1033, 1229, 1381, 1619, 1721, 1759, 1789, 1901
Offset: 1
Examples
212881 is prime and also 2128831, 2128381, 2123881, 213288 and 2312881.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000 (first 275 terms from Paolo Lava)
Crossrefs
Programs
-
Magma
[p: p in PrimesInInterval(11, 2000) | forall{m: t in [1..#Intseq(p)-1] | IsPrime(m) where m is (Floor(p/10^t)*10+3)*10^t+p mod 10^t}]; // Bruno Berselli, Sep 26 2012
-
Maple
with(numtheory); A217063:=proc(q,x) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A217063(1000000,3);
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=3; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012
-
Python
from sympy import isprime, primerange def ok(p): if p < 10: return False s = str(p) return all(isprime(int(s[:i] + "3" + s[i:])) for i in range(1, len(s))) def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)] print(aupto(1901)) # Michael S. Branicky, Nov 17 2021