cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051346 Numbers that can be written as k/d(k) in four or more ways, where d(k) = number of divisors of k.

Original entry on oeis.org

11264, 14175, 28160, 44100, 46464, 51200, 64000, 82944, 95744, 96000, 107008, 109375, 109760, 116160, 129536, 151263, 162624, 163328, 174592, 192000, 208384, 224000, 230912, 239360, 242176, 242550, 246960, 264704, 267520, 281600, 286650, 290304, 298496, 302016
Offset: 1

Views

Author

Keywords

Examples

			From _Jon E. Schoenfield_, Feb 18 2021: (Start)
11264 is a term because it can be written as k/d(k) in four ways:
k =  360448:  360448/d(360448)  =  360448/32 = 11264;
k =  585728:  585728/d(585728)  =  585728/52 = 11264;
k =  630784:  630784/d(630784)  =  630784/56 = 11264;
k = 1115136: 1115136/d(1115136) = 1115136/99 = 11264. (End)
		

Crossrefs

Programs

A217126 Numbers n such that n = k/d(k) has exactly 5 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

64000, 290304, 352000, 432000, 544000, 608000, 736000, 928000, 992000, 1036800, 1184000, 1312000, 1376000, 1504000, 1512000, 1596672, 1696000, 1888000, 1952000, 2100875, 2144000, 2272000, 2336000, 2467584, 2515968, 2528000, 2592000, 2656000, 2757888, 2848000
Offset: 1

Views

Author

Donovan Johnson, Sep 27 2012

Keywords

Examples

			k/d(k) = 64000 for exactly 5 k values: 4096000, 6656000, 7040000, 7168000 and 11520000.
		

Crossrefs

A217127 Numbers n such that n = k/d(k) has exactly 6 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

82944, 456192, 705024, 787968, 953856, 1202688, 1285632, 1534464, 1700352, 1783296, 1949184, 2198016, 2446848, 2529792, 2778624, 2944512, 3027456, 3276288, 3345408, 3442176, 3691008, 3877632, 4022784, 4188672, 4271616, 4333824, 4437504, 4520448, 4686336
Offset: 1

Views

Author

Donovan Johnson, Sep 27 2012

Keywords

Examples

			k/d(k) = 82944 for exactly 6 k values: 7962624, 12939264, 13271040, 13934592, 21565440 and 23224320.
		

Crossrefs

A051522 Least positive integer with exactly n representations as k/d(k), where d(k) = number of divisors of k.

Original entry on oeis.org

18, 4, 1, 3, 11264, 64000, 82944, 27599616
Offset: 0

Views

Author

Keywords

Comments

27599616 is the only number < 4*10^7 with exactly 7 representations as k/d(k). - Donovan Johnson, Sep 29 2012

Examples

			Contribution from _Donovan Johnson_, Sep 29 2012: (Start)
a(1) = A051278(1) = 4. k/d(k) = 4 for exactly 1 k value: 36.
a(2) = A051279(1) = 1. k/d(k) = 1 for exactly 2 k values: 1 and 2.
a(3) = A051280(1) = 3. k/d(k) = 3 for exactly 3 k values: 9, 18 and 24.
a(4) = A217125(1) = 11264. k/d(k) = 11264 for exactly 4 k values: 360448, 585728, 630784 and 1115136.
a(5) = A217126(1) = 64000. k/d(k) = 64000 for exactly 5 k values: 4096000, 6656000, 7040000, 7168000 and 11520000.
a(6) = A217127(1) = 82944. k/d(k) = 82944 for exactly 6 k values: 7962624, 12939264, 13271040, 13934592, 21565440 and 23224320.
a(7) = 27599616. k/d(k) = 27599616 for exactly 7 k values: 10598252544, 17222160384, 17663754240, 18215746560, 18546941952, 28703600640 and 30911569920. (End)
		

Crossrefs

Extensions

a(4)-a(6) verified and a(7) added by Donovan Johnson, Sep 29 2012
Showing 1-4 of 4 results.