A051520 Duplicate of A051346.
11264, 14175, 28160, 44100, 46464, 51200, 64000, 82944, 95744, 96000, 107008, 109375
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
36 is the unique number k with k/d(k)=4.
a051278 n = a051278_list !! (n-1) a051278_list = filter ((== 1) . a051521) [1..] -- Reinhard Zumkeller, Dec 28 2011
with(numtheory): A051278 := proc(n) local ct,k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=1)then return n: else return NULL: fi: end: seq(A051278(n),n=1..40);
cnt[n_] := Count[Table[n == k/DivisorSigma[0, k], {k, 1, 4*n^2}], True]; Select[Range[130], cnt[#] == 1 &] (* Jean-François Alcover, Oct 22 2012 *)
There are exactly 2 numbers k, 40 and 60, with k/d(k)=5.
a051279 n = a051279_list !! (n-1) a051279_list = filter ((== 2) . a051521) [1..] -- Reinhard Zumkeller, Dec 28 2011
with(numtheory): A051279 := proc(n) local ct, k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=2)then return n: else return NULL: fi: end: seq(A051279(n), n=1..40); # Nathaniel Johnston, May 04 2011
A051279 = Reap[Do[ct = 0; For[k = 1, k <= 4*n^2, k++, If[n == k/DivisorSigma[0, k], ct++]]; If[ct == 2, Print[n]; Sow[n]], {n, 1, 160}]][[2, 1]](* Jean-François Alcover, Apr 16 2012, after Nathaniel Johnston *)
There are exactly 3 numbers k, 9, 18 and 24, with k/d(k) = 3.
(Select[Table[k / Length @ Divisors[k], {k, 1, 200000}], IntegerQ] // Sort // Split // Select[#, Length[#] == 3 &] &)[[All, 1]][[1 ;; 53]] (* Jean-François Alcover, Apr 22 2011 *)
k/d(k) = 11264 for exactly 4 k values: 360448, 585728, 630784 and 1115136.
(* Assuming 3*10^5 <= k <= 3*10^8 *) ClearAll[cnt]; cnt[] = 0; Do[ If[IntegerQ[n = k/DivisorSigma[0, k]], cnt[n]++; If[cnt[n] >= 4, Print[{n, k, cnt[n]}]]], {k, 3*10^5, 3*10^8}]; Select[Range[350000], cnt[#] == 4 &] (* _Jean-François Alcover, Sep 28 2012 *)
k/d(k) = 64000 for exactly 5 k values: 4096000, 6656000, 7040000, 7168000 and 11520000.
k/d(k) = 82944 for exactly 6 k values: 7962624, 12939264, 13271040, 13934592, 21565440 and 23224320.
Comments