cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A051520 Duplicate of A051346.

Original entry on oeis.org

11264, 14175, 28160, 44100, 46464, 51200, 64000, 82944, 95744, 96000, 107008, 109375
Offset: 1

Views

Author

Keywords

A051278 Numbers n such that n = k/d(k) has a unique solution, where d(k) = number of divisors of k.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 20, 21, 22, 26, 32, 33, 34, 35, 36, 38, 39, 42, 46, 50, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 100, 102, 106, 108, 110, 111, 114, 115, 118, 119, 122, 123, 126, 128, 129, 130
Offset: 1

Views

Author

Keywords

Comments

Because d(k) <= 2*sqrt(k), it suffices to check k from 1 to 4*n^2. - Nathaniel Johnston, May 04 2011
A051521(a(n)) = 1. - Reinhard Zumkeller, Dec 28 2011

Examples

			36 is the unique number k with k/d(k)=4.
		

Crossrefs

Programs

  • Haskell
    a051278 n = a051278_list !! (n-1)
    a051278_list = filter ((== 1) . a051521) [1..]
    -- Reinhard Zumkeller, Dec 28 2011
  • Maple
    with(numtheory): A051278 := proc(n) local ct,k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=1)then return n: else return NULL: fi: end: seq(A051278(n),n=1..40);
  • Mathematica
    cnt[n_] := Count[Table[n == k/DivisorSigma[0, k], {k, 1, 4*n^2}], True]; Select[Range[130], cnt[#] == 1 &]  (* Jean-François Alcover, Oct 22 2012 *)

A051279 Numbers n such that n = k/d(k) has exactly 2 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

1, 2, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 28, 29, 31, 37, 41, 43, 44, 47, 48, 52, 53, 56, 59, 61, 67, 68, 71, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 97, 101, 103, 104, 107, 109, 113, 116, 120, 124, 127, 131, 132, 136, 137, 139, 148, 149, 151, 152, 154, 156
Offset: 1

Views

Author

Keywords

Comments

Because d(k) <= 2*sqrt(k), it suffices to check k from 1 to 4*n^2. - Nathaniel Johnston, May 04 2011
A051521(a(n)) = 2. - Reinhard Zumkeller, Dec 28 2011

Examples

			There are exactly 2 numbers k, 40 and 60, with k/d(k)=5.
		

Crossrefs

Programs

  • Haskell
    a051279 n = a051279_list !! (n-1)
    a051279_list = filter ((== 2) . a051521) [1..]
    -- Reinhard Zumkeller, Dec 28 2011
  • Maple
    with(numtheory): A051279 := proc(n) local ct, k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=2)then return n: else return NULL: fi: end: seq(A051279(n), n=1..40); # Nathaniel Johnston, May 04 2011
  • Mathematica
    A051279 = Reap[Do[ct = 0; For[k = 1, k <= 4*n^2, k++, If[n == k/DivisorSigma[0, k], ct++]]; If[ct == 2, Print[n]; Sow[n]], {n, 1, 160}]][[2, 1]](* Jean-François Alcover, Apr 16 2012, after Nathaniel Johnston *)

A051280 Numbers n such that n = k/d(k) has exactly 3 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

3, 25, 40, 49, 54, 121, 125, 135, 140, 169, 189, 216, 220, 250, 260, 289, 297, 340, 351, 361, 375, 380, 400, 459, 460, 500, 513, 529, 580, 620, 621, 675, 729, 740, 770, 783, 820, 837, 841, 860, 875, 882, 910, 940, 961, 999, 1060, 1107, 1152, 1161, 1180, 1188, 1190
Offset: 1

Views

Author

Keywords

Comments

Many terms are of the form a(k) * p^m/(m+1), where p is coprime to the three solutions for k. The sequence of "primitive" terms (i.e. not expressible this way) begins 3, 40, 54, 125, 135, 216, 250.... Are there any such numbers that admit a fourth solution? - Charlie Neder, Feb 13 2019

Examples

			There are exactly 3 numbers k, 9, 18 and 24, with k/d(k) = 3.
		

Crossrefs

Programs

  • Mathematica
    (Select[Table[k / Length @ Divisors[k], {k, 1, 200000}], IntegerQ] // Sort // Split // Select[#, Length[#] == 3 &] &)[[All, 1]][[1 ;; 53]] (* Jean-François Alcover, Apr 22 2011 *)

A217125 Numbers n such that n = k/d(k) has exactly 4 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

11264, 14175, 28160, 44100, 46464, 51200, 95744, 96000, 107008, 109375, 109760, 116160, 129536, 151263, 162624, 163328, 174592, 192000, 208384, 224000, 230912, 239360, 242176, 242550, 246960, 264704, 267520, 281600, 286650, 298496, 302016, 323840, 332288
Offset: 1

Views

Author

Donovan Johnson, Sep 27 2012

Keywords

Examples

			k/d(k) = 11264 for exactly 4 k values: 360448, 585728, 630784 and 1115136.
		

Crossrefs

Programs

A217126 Numbers n such that n = k/d(k) has exactly 5 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

64000, 290304, 352000, 432000, 544000, 608000, 736000, 928000, 992000, 1036800, 1184000, 1312000, 1376000, 1504000, 1512000, 1596672, 1696000, 1888000, 1952000, 2100875, 2144000, 2272000, 2336000, 2467584, 2515968, 2528000, 2592000, 2656000, 2757888, 2848000
Offset: 1

Views

Author

Donovan Johnson, Sep 27 2012

Keywords

Examples

			k/d(k) = 64000 for exactly 5 k values: 4096000, 6656000, 7040000, 7168000 and 11520000.
		

Crossrefs

A217127 Numbers n such that n = k/d(k) has exactly 6 solutions, where d(k) = number of divisors of k.

Original entry on oeis.org

82944, 456192, 705024, 787968, 953856, 1202688, 1285632, 1534464, 1700352, 1783296, 1949184, 2198016, 2446848, 2529792, 2778624, 2944512, 3027456, 3276288, 3345408, 3442176, 3691008, 3877632, 4022784, 4188672, 4271616, 4333824, 4437504, 4520448, 4686336
Offset: 1

Views

Author

Donovan Johnson, Sep 27 2012

Keywords

Examples

			k/d(k) = 82944 for exactly 6 k values: 7962624, 12939264, 13271040, 13934592, 21565440 and 23224320.
		

Crossrefs

Showing 1-7 of 7 results.