cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385690 E.g.f. A(x) satisfies A(x) = exp( x*A(x)*(A(x) + A(-x))/2 ).

Original entry on oeis.org

1, 1, 3, 25, 233, 3901, 62707, 1591493, 36539953, 1246111705, 37259797091, 1597211237425, 58891746904729, 3041999861503253, 133421178853319827, 8066042741507516701, 410229480337750129889, 28415048957473232282161, 1644249408980809155863491
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 19;  A[] = 1; Do[A[x] = Exp[x*A[x]*(A[x] + A[-x])/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jul 07 2025 *)

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{i, j, k>=0 and i+j+2*k=n-1} (n-i) * a(i) * a(j) * a(2*k)/(i! * j! * (2*k)!).

A385699 G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(-x))*(A(x) + A(w*x) + A(w^2*x))/6 ), where w = exp(2*Pi*i/3).

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 24, 88, 181, 523, 1616, 4891, 10540, 42009, 94953, 294102, 957259, 3028320, 6864540, 28208447, 66180997, 211105506, 703497178, 2273009790, 5283518340, 22058432677, 52795736539, 171169636087, 578132050147, 1891182035377, 4462525373212
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{i, j, k>=0 and i+2*j+3*k=n-1} a(i) * a(2*j) * a(3*k).
Showing 1-2 of 2 results.