A217148 Smallest possible side length for a perfect squared square of order n; or 0 if no such square exists.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 110, 110, 120, 147, 212, 180, 201, 221, 201, 215, 185, 233, 218, 225, 253, 237
Offset: 1
Links
- S. E. Anderson, Perfect Squared Rectangles and Squared Squares.
- Stuart E. Anderson, 'Special' Perfect Squared Squares", accessed 2014. - _N. J. A. Sloane_, Mar 30 2014
- I. Gambini, Quant aux carrés carrelés, Thesis, Université de la Méditerranée Aix-Marseille II, 1999, pp. 73-78.
- Ed Pegg Jr., Advances in Squared Squares, Wolfram Community Bulletin, Jul 23 2020
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
Extensions
a(29) from Stuart E Anderson added by Geoffrey H. Morley, Nov 23 2012
a(30) from Stuart E Anderson and Lorenz Milla added by Geoffrey H. Morley, Jun 15 2013
a(31) and a(32) from Lorenz Milla and Stuart E Anderson, Oct 05 2013
For additional terms see the Ed Pegg link, also A006983. - N. J. A. Sloane, Jul 29 2020
a(33) to a(37) from J. B. Williams added by Stuart E Anderson, Oct 27 2020
Comments