A217149 Largest possible side length for a perfect squared square of order n; or 0 if no such square exists.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 192, 332, 479, 661, 825, 1179, 1544, 2134, 2710, 3641, 4988, 6391, 8430, 11216, 15039, 20242
Offset: 1
Links
- S. E. Anderson, Perfect Squared Rectangles and Squared Squares.
- Stuart Anderson, 'Special' Perfect Squared Squares", accessed 2014. - _N. J. A. Sloane_, Mar 30 2014
- Ed Pegg Jr., Advances in Squared Squares, Wolfram Community Bulletin, Jul 23 2020
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
Extensions
a(29) from Stuart E Anderson added by Geoffrey H. Morley, Nov 23 2012
a(30), a(31), a(32) from Lorenz Milla and Stuart E Anderson, added by Stuart E Anderson, Oct 05 2013
For additional terms see the Ed Pegg link, also A006983. - N. J. A. Sloane, Jul 29 2020
a(33) to a(37) from J. B. Williams added by Stuart E Anderson, Oct 27 2020
Comments