cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217152 Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle and its subrectangles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 46, 191, 781, 3161, 15002
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle, compound if it does, and trivially compound if a constituent square has the same side length as a side of the squared rectangle under consideration.

Crossrefs

Cf. A217153 (counts symmetries of subrectangles as distinct).

Extensions

a(18) and a(19) added by Geoffrey H. Morley, Oct 12 2012