A181340
Number of compound perfect squared squares of order n up to symmetries of the square and its squared subrectangles.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 16, 46, 143, 412, 941, 2788, 7941, 22413, 62273, 172330, 466508, 1239742, 3257378, 8430928
Offset: 1
From _Geoffrey H. Morley_, Oct 17 2012 (Start):
See MathWorld link for an explanation of Bouwkamp code.
a(24)=1 because all four compound perfect squares of order 24 are equivalent up to symmetries. They have side 175. The Bouwkamp code for one of them is (81,56,38)(18,20)(55,16,3)(1,5,14)(4)(9)(39)(51,30)(29,31,64)(43,8)(35,2)(33). (End)
- J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993. [Includes some compound perfect squares up to order 30.]
- T. H. Willcocks, Problem 7795 & solution, Fairy Chess Review 7 (1948) 97, 106.
- S. E. Anderson, Compound Perfect Squared Squares (complete to order 36).
- S. E. Anderson, Compound Perfect Squared Squares of the Order Twenties, 2013; arXiv:1303.0599 [math.CO], 2013.
- Stuart E Anderson, CPSS discoveries attributed to the person or people who found them
- G. Brinkmann and B. D. McKay, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem., 58 (2007), 323-357.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]
- A. J. W. Duijvestijn, P. J. Federico and P. Leeuw, Compound perfect squares, Amer. Math. Monthly 89 (1982), 15-32. [The lowest order of a compound perfect square is 24.]
- N. D. Kazarinoff and R. Weitzenkamp, On the existence of compound perfect squared squares of small order, J. Combin. Theory Ser. B 14 (1973), 163-179. [A compound perfect squared square must contain at least 22 subsquares.]
- Lorenz Milla, Depiction of all CPSS until order 31
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
- Wikipedia, Squaring the square
- Index entries for squared squares
Cf.
A217155 (counts symmetries of subrectangles as distinct).
Corrected last term from 142 to 143 to include cpss 1170C, added cross reference
Corrected last term from 143 to 144 to include cpss 1224d, incorrectly excluded as a duplicate in the initial count.
Corrected last term from 144 back to 143 after a recount from the original graphs established a bijection between exactly 948 non-isomorphic graphs and 948 isomers in 143 different CPSS arrangements. Gave usual bouwkampcode notation in examples. Removed redundant word "mathematically" from comments. -
Stuart E Anderson, Jan 2012
Clarified the definition of 'number' in relation to the 'number' of compound squares, included the definition of 'perfect'. Excluded the trivial dissection from the sequence count. -
Stuart E Anderson, May 2012
a(33)-a(36), enumeration of these orders was completed by Jim Williams in 2014, added by
Stuart E Anderson, May 02 2016
a(37)-a(39), enumeration of these orders was completed by Jim Williams in 2018, added by
Stuart E Anderson, Sep 17 2018
A217153
Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 48, 264, 1256, 5396, 22540, 92060, 370788
Offset: 1
Cf.
A217152 (counts symmetries of squared subrectangles as equivalent).
A217155
Number of compound perfect squared squares of order n up to symmetries of the square.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 12, 100, 220, 948, 2308, 5668, 17351, 52196, 150669, 429458, 1206181, 3337989, 8961794, 23989218, 62894424
Offset: 1
See MathWorld link for an explanation of Bouwkamp code.
a(24)=4 because the compound perfect squares of order 24 comprise the one with side 175 and Bouwkamp code (81,56,38) (18,20) (55,16,3) (1,5,14) (4) (9) (39) (51,30) (29,31,64) (43,8) (35,2) (33) and three others from the other symmetries of the squared subrectangle.
- J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993. [Includes some compound perfect squares up to order 30.]
- S. E. Anderson, Compound Perfect Squared Squares (complete to order 36).
- S. E. Anderson, Compound Perfect Squared Squares of the Order Twenties, arXiv:1303.0599 [math.CO], 2013.
- A. J. W. Duijvestijn, P. J. Federico and P. Leeuw, Compound perfect squares, Amer. Math. Monthly 89 (1982), 15-32. [The lowest order of a compound perfect square is 24.]
- I. Gambini, Quant aux carrés carrelés, Thesis, Université de la Méditerranée Aix-Marseille II, 1999, p. 25.
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
Cf.
A181340 (counts symmetries of squared subrectangles as equivalent).
A110148
Number of perfect squared rectangles of order n up to symmetries of the rectangle and of its subrectangles if any.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 38, 127, 408, 1375, 4783, 16645, 58059, 203808, 722575
Offset: 1
Tanya Khovanova, Feb 18 2007
- C. J. Bouwkamp, On the dissection of rectangles into squares (Papers I-III), Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, Paper I, 49 (1946), 1176-1188 (=Indagationes Math., v. 8 (1946), 724-736); Paper II, 50 (1947), 58-71 (=Indagationes Math., v. 9 (1947), 43-56); Paper III, 50 (1947), 72-78 (=Indagationes Math., v. 9 (1947), 57-63). [Paper I has terms up to a(12) and an incorrect value for a(13) on p. 1178.]
- C. J. Bouwkamp, On the construction of simple perfect squared squares, Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, 50 (1947), 1296-1299 (=Indagationes Math., v. 9 (1947), 622-625). [Correct terms up to a(13) on p. 1299.]
- I. M. Yaglom, How to dissect a square? (in Russian), Nauka, Moscow, 1968. In djvu format (1.7M), also as this pdf (9.5M). [Terms up to a(13) on pp. 26-7.]
- Index entries for squared rectangles
- Index entries for squared squares
Cf.
A217154 (counts symmetries of any subrectangles as distinct).
A217374
Number of trivially compound perfect squared rectangles of order n up to symmetries of the rectangle and its subrectangles.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 60, 194, 622, 2128, 7438, 25852, 90266, 317350, 1127800
Offset: 1
- C. J. Bouwkamp, On the dissection of rectangles into squares (Papers I-III), Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, Paper I, 49 (1946), 1176-1188 (=Indagationes Math., v. 8 (1946), 724-736); Paper II, 50 (1947), 58-71 (=Indagationes Math., v. 9 (1947), 43-56); Paper III, 50 (1947), 72-78 (=Indagationes Math., v. 9 (1947), 57-63). [Paper I has terms up to a(13) on p. 1178.]
- C. J. Bouwkamp, On the construction of simple perfect squared squares, Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, 50 (1947), 1296-1299 (=Indagationes Math., v. 9 (1947), 622-625).
- Index entries for squared rectangles
Cf.
A217375 (counts symmetries of squared subrectangles as distinct).
Showing 1-5 of 5 results.
Comments