cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006983 Number of simple perfect squared squares of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 12, 26, 160, 441, 1152, 3001, 7901, 20566, 54541, 144161, 378197, 990981, 2578081, 6674067, 17086918
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number of two or more squares. If no two squares have the same size, the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares. - Geoffrey H. Morley, Oct 17 2012

References

  • J.-P. Delahaye, Les inattendus mathématiques, Belin-Pour la Science, Paris, 2004, pp. 95-96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129947, A217149, A228953 (related to sizes of the squares).
Cf. A349205, A349206, A349207, A349208, A349209, A349210 (related to ratios of element and square sizes).

Extensions

Leading term changed from 0 to 1, Apr 15 1996
More terms from Stuart E Anderson, May 08 2003, Nov 2010
Leading term changed back to 0, Dec 25 2010 (cf. A178688)
a(29) added by Stuart E Anderson, Aug 22 2010; contributors to a(29) include Ed Pegg Jr and Stephen Johnson
a(29) changed to 7901, identified a duplicate tiling in order 29. - Stuart E Anderson, Jan 07 2012
a(28) changed to 3000, identified a duplicate tiling in order 28. - Stuart E Anderson, Jan 14 2012
a(28) changed back to 3001 after a complete recount of order 28 SPSS recalculated from c-nets with cleansed data, established the correct total of 3001. - Stuart E Anderson, Jan 24 2012
Definition clarified by Geoffrey H. Morley, Oct 17 2012
a(30) added by Stuart E Anderson, Apr 10 2013
a(31), a(32) added by Stuart E Anderson, Sep 29 2013
a(33), a(34) and a(35) added by Stuart E Anderson, May 02 2016
Moved comments on orders 27 to 35 to a linked file. Stuart E Anderson, May 02 2016
a(36) and a(37) enumerated by Jim Williams, added by Stuart E Anderson, Jul 26 2020.

A217156 Number of perfect squared squares of order n up to symmetries of the square.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 12, 30, 172, 541, 1372, 3949, 10209, 26234, 71892, 196357, 528866, 1420439, 3784262, 10012056, 26048712
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

a(n) is the number of solutions to the classic problem of 'squaring the square' by n unequal squares. A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares. A squared rectangle is simple if it does not contain a smaller squared rectangle, and compound if it does.

Examples

			a(21) = 1 because there is a unique perfect squared square of order 21. A014530 gives the sizes of its constituent squares.
		

References

  • H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991, section C2, pp. 81-83.
  • A. J. W. Duijvestijn, Fast calculation of inverse matrices occurring in squared rectangle calculation, Philips Res. Rep. 30 (1975), 329-339.
  • P. J. Federico, Squaring rectangles and squares: A historical review with annotated bibliography, in Graph Theory and Related Topics, J. A. Bondy and U. S. R. Murty, eds., Academic Press, 1979, 173-196.
  • J. H. van Lint and R. M. Wilson, A course in combinatorics, Chapter 34 "Electrical networks and squared squares", pp. 449-460, Cambridge Univ. Press, 1992.
  • J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993.
  • I. Stewart, Squaring the Square, Scientific Amer., 277, July 1997, pp. 94-96.
  • W. T. Tutte, Squaring the Square, in M. Gardner's 'Mathematical Games' column in Scientific American 199, Nov. 1958, pp. 136-142, 166. Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250, and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-7.
  • W. T. Tutte, Graph theory as I have known it, Chapter 1 "Squaring the square", pp. 1-11, Clarendon Press, Oxford, 1998.

Crossrefs

Cf. A181735 (counts symmetries of any squared subrectangles as equivalent).

Formula

a(n) = A006983(n) + A217155(n).

Extensions

Added a(29) = 10209, Stuart E Anderson, Nov 30 2012
Added a(30) = 26234, Stuart E Anderson, May 26 2013
Added a(31) = 71892, a(32) = 196357, Stuart E Anderson, Sep 30 2013
Added a(33) = 528866, a(34) = 1420439, a(35) = 3784262, due to enumeration completed by Jim Williams in 2014 and 2016. Stuart E Anderson, May 02 2016
a(36) and a(37) completed by Jim Williams in 2016 to 2018, added by Stuart E Anderson, Oct 28 2020

A002962 Number of simple imperfect squared squares of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 5, 15, 19, 57, 72, 274, 491, 1766, 3679, 11158, 24086, 64754, 132598, 326042, 667403, 1627218, 3508516
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares. - Geoffrey H. Morley, Oct 17 2012
Orders 15 to 19 were enumerated by C. J. Bowkamp and A. J. W. Duijvestijn (1962). Orders 20 to 29 were enumerated by Stuart Anderson (2010-2012). Orders 30 to 32 were enumerated by Lorenz Milla and Stuart Anderson (2013). - Stuart E Anderson, Sep 30 2013

References

  • C. J. Bouwkamp, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(19) corrected and terms extended up to a(22) by Stuart E Anderson, Mar 08 2011
a(21) and a(22) corrected and terms extended to a(25) by Stuart E Anderson, Apr 24 2011
a(21), a(22), a(25) corrected and a(26)-a(28) added by Stuart E Anderson, Jul 11 2011
a(29) from Stuart E Anderson, Ed Pegg Jr, Stephen Johnson, Aug 22 2011
a(29) corrected by Stuart E Anderson, Aug 24 2011
Definition clarified and offset changed to 1 by Geoffrey H. Morley, Oct 17 2012
a(28) corrected by Stuart E Anderson, Dec 01 2012
a(30) from Lorenz Milla and Stuart E Anderson, Apr 10 2013
a(26) and a(29) corrected by Stuart E Anderson, Aug 20 2013
a(31), a(32) from Lorenz Milla and Stuart E Anderson, Sep 30 2013

A181340 Number of compound perfect squared squares of order n up to symmetries of the square and its squared subrectangles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 16, 46, 143, 412, 941, 2788, 7941, 22413, 62273, 172330, 466508, 1239742, 3257378, 8430928
Offset: 1

Views

Author

Stuart E Anderson, Oct 13 2010, Oct 16 2010

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size, the squared rectangle is perfect. A squared rectangle is compound if it contains a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares. - Geoffrey H. Morley, Oct 17 2012
The smallest perfect compound squared square was published by T. H. Willcocks in 1948, has 24 squares and has one rectangle as a sub-dissection; however, it was not until 1982 that A. J. W. Duijvestijn, P. J. Federico and P. Leeuw proved it to be the lowest-order example.
In 2010 Stuart Anderson and Ed Pegg Jr generated all 2-connected minimum degree 3 planar graphs up and including 29 edges, using B. D. McKay and G. Brinkmann's plantri software, then applied electrical node analysis to the graphs to obtain complete counts of compound perfect squares in orders 24, 25, 26, 27 and 28, along with all the members of each equivalence class of each compound square.
In 2011 S. E. Anderson and Stephen Johnson commenced order 29 CPSSs, and processed all plantri generated 2-connected minimum degree 3 planar graph embeddings with up to 15 vertices. This left the largest graph class, the 16 vertex class. In 2012 S. E. Anderson processed the remaining graphs, using the Amazon Elastic Cloud supercomputer and new software which he wrote to find a(29). - Stuart E Anderson, Nov 30 2012
In May 2013 Lorenz Milla and Stuart Anderson enumerated a(30) (CPSSs of order 30), using the same process and software as used on order 29 CPSSs, with the addition of a technique recommended by William Tutte in his writings which resulted in a 3x speed-up of the search for perfect squared squares by factoring the determinant of the Kirchhoff/discrete Laplacian matrix of a graph into a product 2fS, where f is a squarefree number and S is a square number. - Stuart E Anderson, May 26 2013
From June to September 2013, Lorenz Milla further optimized the process and software and completed the computation required to enumerate all CPSSs of order 31 and 32. A second run with enhanced software was undertaken by Milla and Anderson as there was a possibility some CPSSs could have been missed on the first run. The second run found nothing new or different and confirmed the result. - Stuart E Anderson, Sep 29 2013
In April 2014, Jim Williams wrote software and used it to complete the enumeration of CPSS orders 33, 34, 35 and 36. - Stuart E Anderson, May 02 2016
In August 2018, Jim Williams completed the enumeration of CPSS orders 37, 38 and 39. - Stuart E Anderson, Sep 17 2018.

Examples

			From _Geoffrey H. Morley_, Oct 17 2012 (Start):
See MathWorld link for an explanation of Bouwkamp code.
a(24)=1 because all four compound perfect squares of order 24 are equivalent up to symmetries. They have side 175. The Bouwkamp code for one of them is (81,56,38)(18,20)(55,16,3)(1,5,14)(4)(9)(39)(51,30)(29,31,64)(43,8)(35,2)(33). (End)
		

References

  • J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993. [Includes some compound perfect squares up to order 30.]
  • T. H. Willcocks, Problem 7795 & solution, Fairy Chess Review 7 (1948) 97, 106.

Crossrefs

Cf. A217155 (counts symmetries of subrectangles as distinct).

Extensions

Corrected last term from 142 to 143 to include cpss 1170C, added cross reference
Corrected last term from 143 to 144 to include cpss 1224d, incorrectly excluded as a duplicate in the initial count.
Corrected last term from 144 back to 143 after a recount from the original graphs established a bijection between exactly 948 non-isomorphic graphs and 948 isomers in 143 different CPSS arrangements. Gave usual bouwkampcode notation in examples. Removed redundant word "mathematically" from comments. - Stuart E Anderson, Jan 2012
Clarified the definition of 'number' in relation to the 'number' of compound squares, included the definition of 'perfect'. Excluded the trivial dissection from the sequence count. - Stuart E Anderson, May 2012
Definition corrected and offset changed to 1 by Geoffrey H. Morley, Oct 17 2012
a(29) added by Stuart E Anderson, Nov 30 2012
a(30) added by Stuart E Anderson, May 26 2013
a(31)-a(32) added by Stuart E Anderson, Sep 29 2013
a(33)-a(36), enumeration of these orders was completed by Jim Williams in 2014, added by Stuart E Anderson, May 02 2016
a(37)-a(39), enumeration of these orders was completed by Jim Williams in 2018, added by Stuart E Anderson, Sep 17 2018

A217153 Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 48, 264, 1256, 5396, 22540, 92060, 370788
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle, compound if it does, and trivially compound if a constituent square has the same side length as a side of the squared rectangle under consideration.

Crossrefs

Cf. A217152 (counts symmetries of squared subrectangles as equivalent).

Extensions

a(19) and a(20) corrected (thanks to Stuart E Anderson's computations which show I misinterpreted Gambini's counts) by Geoffrey H. Morley, Oct 12 2012

A217152 Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle and its subrectangles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 46, 191, 781, 3161, 15002
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle, compound if it does, and trivially compound if a constituent square has the same side length as a side of the squared rectangle under consideration.

Crossrefs

Cf. A217153 (counts symmetries of subrectangles as distinct).

Extensions

a(18) and a(19) added by Geoffrey H. Morley, Oct 12 2012

A319926 Isomer counts of compound perfect squared squares.

Original entry on oeis.org

4, 7, 8, 11, 12, 14, 16
Offset: 1

Views

Author

Stuart E Anderson, Oct 01 2018

Keywords

Comments

The isomer count of a compound perfect squared square (CPSS) is the number of ways its squared subrectangle and constituent squares can be arranged, up to symmetry of the CPSS. A squared square is perfect if none of its constituent squares are the same size. A squared square is compound if it contains a smaller squared subrectangle. Note that the squared subrectangle can be a squared square. Specific concrete examples of CPSSs with isomer counts under 100 of 4, 7, 8, 11, 12, 16, 19, 20, 23, 24, 28, 31, 32, 35, 36, 39, 40, 47, 48, 56, 60, 63, 64, 68, 72, 76, 80, 88 and 96 exist. Geometric constructions based on a suitable pair of perfect squared rectangles each with up to 4 isomers suggests additional isomer counts up to 100 of 14, 21, 22, 33, 42, 44, 66 and 99, but no actual examples are known. As the number of squares in a squared square - the order - increases new arrangements appear. It is conjectured that expected CPSS subrectangle isomer arrangements will eventually appear if the order is high enough.
The term a(6)=14 is based on a theoretical construction, not on known or existing CPSSs. These terms have been included to distinguish the sequence from others. Considering all the ways two or more subrectangles can be arranged within a CPSS it does not appear possible for a CPSS with 5, 6, 9, 10 or 13 isomers to exist but even this much has not been proved.

Examples

			a(1) = 4, because the compound perfect squares of order 24 comprise the square with side 175 and Bouwkamp code (81,56,38) (18,20) (55,16,3) (1,5,14) (4) (9) (39) (51,30) (29,31,64) (43,8) (35,2) (33) as well as three others from the other symmetries of the order-13 111 X 94 squared subrectangle. See MathWorld link for an explanation of Bouwkamp code.
		

Crossrefs

Showing 1-7 of 7 results.