cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A006983 Number of simple perfect squared squares of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 12, 26, 160, 441, 1152, 3001, 7901, 20566, 54541, 144161, 378197, 990981, 2578081, 6674067, 17086918
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number of two or more squares. If no two squares have the same size, the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares. - Geoffrey H. Morley, Oct 17 2012

References

  • J.-P. Delahaye, Les inattendus mathématiques, Belin-Pour la Science, Paris, 2004, pp. 95-96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129947, A217149, A228953 (related to sizes of the squares).
Cf. A349205, A349206, A349207, A349208, A349209, A349210 (related to ratios of element and square sizes).

Extensions

Leading term changed from 0 to 1, Apr 15 1996
More terms from Stuart E Anderson, May 08 2003, Nov 2010
Leading term changed back to 0, Dec 25 2010 (cf. A178688)
a(29) added by Stuart E Anderson, Aug 22 2010; contributors to a(29) include Ed Pegg Jr and Stephen Johnson
a(29) changed to 7901, identified a duplicate tiling in order 29. - Stuart E Anderson, Jan 07 2012
a(28) changed to 3000, identified a duplicate tiling in order 28. - Stuart E Anderson, Jan 14 2012
a(28) changed back to 3001 after a complete recount of order 28 SPSS recalculated from c-nets with cleansed data, established the correct total of 3001. - Stuart E Anderson, Jan 24 2012
Definition clarified by Geoffrey H. Morley, Oct 17 2012
a(30) added by Stuart E Anderson, Apr 10 2013
a(31), a(32) added by Stuart E Anderson, Sep 29 2013
a(33), a(34) and a(35) added by Stuart E Anderson, May 02 2016
Moved comments on orders 27 to 35 to a linked file. Stuart E Anderson, May 02 2016
a(36) and a(37) enumerated by Jim Williams, added by Stuart E Anderson, Jul 26 2020.

A002839 Number of simple perfect squared rectangles of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 22, 67, 213, 744, 2609, 9016, 31426, 110381, 390223, 1383905, 4931308, 17633773, 63301427, 228130926, 825229110, 2994833854
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle is a rectangle dissected into a finite number of integer-sized squares. If no two of these squares are the same size then the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle or squared square. The order of a squared rectangle is the number of squares into which it is dissected. [Edited by Stuart E Anderson, Feb 03 2024]

References

  • See A217156 for further references and links.
  • C. J. Bouwkamp, personal communication.
  • C. J. Bouwkamp, A. J. W. Duijvestijn and P. Medema, Catalogue of simple squared rectangles of orders nine through fourteen and their elements, Technische Hogeschool, Eindhoven, The Netherlands, May 1960, 50 pp.
  • C. J. Bouwkamp, A. J. W. Duijvestijn and J. Haubrich, Catalogue of simple perfect squared rectangles of orders 9 through 18, Philips Research Laboratories, Eindhoven, The Netherlands, 1964 (unpublished) vols 1-12, 3090 pp.
  • A. J. W. Duijvestijn, Fast calculation of inverse matrices occurring in squared rectangle calculation, Philips Res. Rep. 30 (1975), 329-339.
  • M. E. Lines, Think of a Number, Institute of Physics, London, 1990, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, Squaring the Square, in M. Gardner's 'Mathematical Games' column in Scientific American 199, Nov. 1958, pp. 136-142, 166. Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250 [sequence p. 207], and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-7 [sequence p. 162].

Crossrefs

Formula

From Stuart E Anderson, Mar 02 2011, Feb 03 2024: (Start)
In "A Census of Planar Maps", p. 267, William Tutte gave a conjectured asymptotic formula for the number of perfect squared rectangles where n is the number of elements in the dissection (the order):
Conjecture: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)). (End)
a(n) = A006983(n) + A219766(n). - Stuart E Anderson, Dec 07 2012

Extensions

Definition corrected to include 'simple'. 'Simple' and 'perfect' defined in comments. - Geoffrey H. Morley, Mar 11 2010
Corrected a(18) and extended terms to order 21. All 3-connected planar graphs up to 22 edges used to generate dissections. Imperfect squared rectangles, compound squared rectangles, and all squared squares filtered out leaving simple perfect squared rectangles. - Stuart E Anderson, Mar 2011
Corrected a(18) to a(21) after removing last remaining compounds. - Stuart E Anderson, Apr 10 2011
Added a(22), a(23) and a(24) from Ian Gambini's thesis and corrected a(22). Added I. Gambini's thesis reference. - Stuart E Anderson, May 08 2011
Added some additional references, previous correction to a(22) is an increase of 4 based on a new count of order 22. - Stuart E Anderson, Jul 13 2012
Terms a(21)-a(24) corrected to include squares by Geoffrey H. Morley, Oct 17 2012
a(22)=17633773 from Stuart E Anderson confirmed by Geoffrey H. Morley, Nov 28 2012
a(23)-a(24) from Gambini confirmed by Stuart E Anderson, Dec 07 2012
a(25) from Stuart E Anderson, May 07 2024
a(26) from Stuart E Anderson, Jul 28 2024

A181735 Number of perfect squared squares of order n up to symmetries of the square and of its squared subrectangles, if any.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 12, 27, 162, 457, 1198, 3144, 8313, 21507, 57329, 152102, 400610, 1053254, 2750411, 7140575, 18326660
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size, the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares. A squared rectangle is simple if it does not contain a smaller squared rectangle, and compound if it does. - Geoffrey H. Morley, Oct 17 2012

Examples

			From _Geoffrey H. Morley_, Oct 17 2012 (Start):
a(21) = 1 because there is a unique perfect squared square of order 21. A014530 gives the sizes of its constituent squares.
a(24) = 27 because there are A217156(24) = 30 perfect squared squares of order 24 but four of them differ only in the symmetries of a squared subrectangle. (End)
		

References

  • See A217156 for further references and links.
  • J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993.

Crossrefs

Cf. A217156 (counts symmetries of any subrectangles as distinct).

Formula

a(n) = A006983(n) + A181340(n). - Geoffrey H. Morley, Oct 17 2012

Extensions

Corrected last term to 3144 to reflect correction to 143 of last order 28 compound squares term in A181340.
Added more clarification in comments on definition of a perfect squared square. - Stuart E Anderson, May 23 2012
Definition corrected and offset changed to 1 by Geoffrey H. Morley, Oct 17 2012
a(29) added by Stuart E Anderson, Dec 01 2012
a(30) added by Stuart E Anderson, May 26 2013
a(31) and a(32) added by Stuart E Anderson, Sep 30 2013
a(33), a(34) and a(35) added after enumeration by Jim Williams, Stuart E Anderson, May 02 2016
a(36) and a(37) from Jim Williams, completed in 2018 to 2020, added by Stuart E Anderson, Oct 28 2020

A129947 Smallest possible side length for a simple perfect squared square of order n; or 0 if no such square exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 110, 110, 120, 147, 212, 180, 201, 221, 201, 215, 185, 223, 218, 225, 253, 237
Offset: 1

Views

Author

Alexander Adamchuk, Jun 09 2007, corrected Jun 11 2007

Keywords

Comments

It is not known whether this sequence is the same as sequence A217148. It may be that A129947(33) = 246 and A217148(33) = 234. - Geoffrey H. Morley, Jan 10 2013
From Geoffrey H. Morley, Oct 17 2012: (Start)
A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle.
The smallest known sides of simple perfect squared squares (and the known orders of the squares) are 110 (22, 23), 112 (21), 120 (24), 139 (22, 23), 140 (23), 145 (23), 147 (22, 25) ...
The upper bounds shown below for n = 38 and 40-44 are from J. B. Williams. The rest are from Gambini's thesis. - Geoffrey H. Morley, Mar 08 2013
======================================
Upper bounds for a(n) for n = 38 to 59
======================================
| +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
======================================================
30 | - - - - - - - - 352 360
40 | 328 336 360 413 425 543 601 691 621 779
50 | 788 853 ? 824 971 939 929 985 1100 1060
======================================================
(End)

Crossrefs

Extensions

Unproved statement misattributed to Skinner replaced, known upper bounds corrected, and crossref added by Geoffrey H. Morley, Mar 19 2010
Additional term added, initial term a(0)=1 deleted by Stuart E Anderson, Dec 26 2010
Upper bounds for terms a(31) to a(78), (all from Ian Gambini's thesis) added by Stuart E Anderson, Jan 20 2011
New bound for a(29)<=221, from Stuart E Anderson & Ed Pegg Jr, Jan 20 2011
a(29) confirmed as 221, from Stuart E Anderson, Ed Pegg Jr, and Stephen Johnson, Aug 22 2011
New bound for a(31)<=236, computed by Stephen Johnson in September 2011, updated by Stuart E Anderson, Oct 04 2011
a(30) from Stuart E Anderson and Lorenz Milla added by Geoffrey H. Morley, Jun 15 2013
a(31) and a(32) from Lorenz Milla and Stuart E Anderson, Oct 05 2013
For additional terms see the Ed Pegg link, also A006983. - N. J. A. Sloane, Jul 29 2020
a(33) to a(37) from J. B. Williams, added by Stuart E Anderson, Oct 27 2020

A002962 Number of simple imperfect squared squares of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 5, 15, 19, 57, 72, 274, 491, 1766, 3679, 11158, 24086, 64754, 132598, 326042, 667403, 1627218, 3508516
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares. - Geoffrey H. Morley, Oct 17 2012
Orders 15 to 19 were enumerated by C. J. Bowkamp and A. J. W. Duijvestijn (1962). Orders 20 to 29 were enumerated by Stuart Anderson (2010-2012). Orders 30 to 32 were enumerated by Lorenz Milla and Stuart Anderson (2013). - Stuart E Anderson, Sep 30 2013

References

  • C. J. Bouwkamp, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(19) corrected and terms extended up to a(22) by Stuart E Anderson, Mar 08 2011
a(21) and a(22) corrected and terms extended to a(25) by Stuart E Anderson, Apr 24 2011
a(21), a(22), a(25) corrected and a(26)-a(28) added by Stuart E Anderson, Jul 11 2011
a(29) from Stuart E Anderson, Ed Pegg Jr, Stephen Johnson, Aug 22 2011
a(29) corrected by Stuart E Anderson, Aug 24 2011
Definition clarified and offset changed to 1 by Geoffrey H. Morley, Oct 17 2012
a(28) corrected by Stuart E Anderson, Dec 01 2012
a(30) from Lorenz Milla and Stuart E Anderson, Apr 10 2013
a(26) and a(29) corrected by Stuart E Anderson, Aug 20 2013
a(31), a(32) from Lorenz Milla and Stuart E Anderson, Sep 30 2013

A217149 Largest possible side length for a perfect squared square of order n; or 0 if no such square exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 192, 332, 479, 661, 825, 1179, 1544, 2134, 2710, 3641, 4988, 6391, 8430, 11216, 15039, 20242
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares. By convention the sides of the subsquares are integers with no common factor.
A squared rectangle is simple if it does not contain a smaller squared rectangle. Every perfect square with the largest known side length for each order up to 37 is simple.

Crossrefs

Extensions

a(29) from Stuart E Anderson added by Geoffrey H. Morley, Nov 23 2012
a(30), a(31), a(32) from Lorenz Milla and Stuart E Anderson, added by Stuart E Anderson, Oct 05 2013
For additional terms see the Ed Pegg link, also A006983. - N. J. A. Sloane, Jul 29 2020
a(33) to a(37) from J. B. Williams added by Stuart E Anderson, Oct 27 2020

A217154 Number of perfect squared rectangles of order n up to symmetries of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 62, 235, 821, 2868, 10193, 36404, 130174, 466913, 1681999, 6083873
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle, compound if it does, and trivially compound if a constituent square has the same side length as a side of the squared rectangle under consideration.

Examples

			a(10) = 14 comprises the A002839(10) = 6 simple perfect squared rectangles (SPSRs) of order 10 and the 8 trivially compound perfect squared rectangles which each comprises one of the two order 9 SPSRs and one other square.
		

References

  • See crossrefs for references and links.

Crossrefs

Cf. A110148 (counts symmetries of any squared subrectangles as equivalent).

Formula

a(n) = A002839(n) + A217153(n) + A217375(n).
a(n) >= 2*a(n-1) + A002839(n) + 2*A002839(n-1) + A217153(n) + 2*A217153(n-1), with equality for n<19.

Extensions

a(19) and a(20) corrected by Geoffrey H. Morley, Oct 12 2012

A002881 Number of simple imperfect squared rectangles of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 9, 34, 104, 283, 953, 3029, 9513, 30359, 98969, 323646, 1080659, 3668432, 12608491, 43745771, 153812801
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size, the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of its constituent squares. [Geoffrey H. Morley, Oct 17 2012]

References

  • C. J. Bouwkamp, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, Squaring the Square, in M. Gardner's "Mathematical Games" column in Scientific American 199, Nov. 1958, pp. 136-142, 166, Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250 [sequence on p. 207], and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-187 [sequence on p. 162].

Crossrefs

Formula

a(n) = A002962(n) + A220165(n).

Extensions

Edited ("simple" added to the definition, definition of "simple" given in the comments), terms a(13), a(15), a(16), a(17), and a(18) corrected, and terms extended to a(20) by Stuart E Anderson, Mar 09 2011
a(16)-a(20) corrected (excess compounds removed) by Stuart E Anderson, Apr 10 2011
Sequence reverted to the one in Bouwkamp et al. (1960), Gardner (1961), Sloane (1973), and Sloane & Plouffe (1995), which includes simple imperfect squares, by Geoffrey H. Morley, Oct 17 2012
a(19)-a(20) corrected, a(21)-a(24) added by Stuart E Anderson, Dec 03 2012
a(25) from Stuart E Anderson, May 07 2024
a(26) from Stuart E Anderson, Jul 28 2024

A217155 Number of compound perfect squared squares of order n up to symmetries of the square.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 12, 100, 220, 948, 2308, 5668, 17351, 52196, 150669, 429458, 1206181, 3337989, 8961794, 23989218, 62894424
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size, the squared rectangle is perfect. A squared rectangle is compound if it contains a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares.
The terms up to a(26) were first published by Gambini (1999) but included no new squarings neither counted by Duijvestijn, Federico and Leeuw (1982) nor in Skinner's book (1993). In 2010 Anderson and Pegg used plantri and Anderson's programs to confirm Gambini's counts and to find a(27) and a(28).
In 2011, S. E. Anderson and Stephen Johnson commenced order 29 CPSSs, and processed all plantri generated 2-connected minimum degree 3 planar graph embeddings with up to 15 vertices. This left the largest graph class, the 16 vertex class. In 2012, S. E. Anderson processed the remaining graphs, using the Amazon Elastic Cloud supercomputer and new software which he wrote to find a(29). - Stuart E Anderson, Nov 30 2012
In May 2013, Lorenz Milla and Stuart Anderson enumerated a(30) (CPSSs of order 30), using the same process and software as used on order 29 CPSSs, with the addition of a technique recommended by William Tutte in his writings which resulted in a 3x speed up of the search for perfect squared squares by factoring the determinant of the Kirchhoff/discrete Laplacian matrix of a graph into a product 2fS, where f is a squarefree number and S is a square number. - Stuart E Anderson, May 26 2013
From June to September 2013, Lorenz Milla further optimized the process and software and completed the computation required to enumerate all CPSSs of order 31 and 32. A second run with enhanced software was undertaken by Milla and Anderson as there was a possibility some CPSSs could have been missed on the first run. The second run found nothing new or different and confirmed the result. - Stuart E Anderson Sep 29 2013
In April 2014, Jim Williams wrote software and enumerated all CPSSs in orders 33, 34, 35 and 36. - Stuart E Anderson May 02 2016
In August 2018, Jim Williams completed the enumeration of all CPSSs and CPSS isomers in orders 37, 38 and 39. - Stuart E Anderson, Sep 17 2018

Examples

			See MathWorld link for an explanation of Bouwkamp code.
a(24)=4 because the compound perfect squares of order 24 comprise the one with side 175 and Bouwkamp code (81,56,38) (18,20) (55,16,3) (1,5,14) (4) (9) (39) (51,30) (29,31,64) (43,8) (35,2) (33) and three others from the other symmetries of the squared subrectangle.
		

References

  • J. D. Skinner II, Squared Squares: Who's Who & What's What, published by the author, 1993. [Includes some compound perfect squares up to order 30.]

Crossrefs

Cf. A181340 (counts symmetries of squared subrectangles as equivalent).

Extensions

a(29) from Stuart E Anderson, Nov 30 2012
a(30) from Stuart E Anderson, May 26 2013
a(31)-a(32) from Stuart E Anderson, Sep 29 2013
Minor edits by Jon E. Schoenfield, Feb 15 2014
a(33)-a(36) from Stuart E Anderson, May 02 2016
a(37)-a(39) from Stuart E Anderson, Sep 17 2018

A342558 a(n) is the maximum number of distinct currents > 0 in a network of n one-ohm resistors with a total resistance of 1 ohm.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
Offset: 1

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 26 2021

Keywords

Comments

The resistor networks considered here correspond to multigraphs in which each edge is replaced by one or more one-ohm resistors, and in which there are two distinguished nodes, called poles, between which there is a total resistance of 1 ohm.
It was known that the smallest resistor network with all currents being distinct consists of 21 resistors, found by Duijvestin in 1978. This assumes that the network is planar and thus the analogy to the perfectly tiled squares exists, see A014530. For history and references see link to Stuart Anderson's website "SPSS, Order 21".
In 1983, A. Augusteijn and A. J. W. Duijvestijn described networks in which the number of resistors in a network with distinct resistances was reduced to 20 by allowing the tiled square to be wrapped onto a cylinder. (see links to their publication and to Stuart Anderson's website "Simple Perfect Square-Cylinders")
For values of n greater than 21 increasingly numerous square divisions with a(n) = n exist so that a(n) = n holds for all n > 21 (see A006983).
In the present sequence, networks based on non-planar graphs are allowed, which makes it possible to find networks with a(n) = n also for n = 18 and n = 19.
In the range from n = 13 to n = 17, larger numbers of distinct currents are found than are possible with the methods for generating Mrs. Perkins's quilts, which naturally correspond to planar graphs.

Examples

			Examples for n <= 21 are given in the Pfoertner links. Visualizations of tilings corresponding to optimal networks for n <= 12 are given in the Mathworld "Mrs. Perkins's Quilt" link.
		

Crossrefs

Formula

a(n) = n for n >= 18.
Showing 1-10 of 17 results. Next