A002839 Number of simple perfect squared rectangles of order n up to symmetry.
0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 22, 67, 213, 744, 2609, 9016, 31426, 110381, 390223, 1383905, 4931308, 17633773, 63301427, 228130926, 825229110, 2994833854
Offset: 1
References
- See A217156 for further references and links.
- C. J. Bouwkamp, personal communication.
- C. J. Bouwkamp, A. J. W. Duijvestijn and P. Medema, Catalogue of simple squared rectangles of orders nine through fourteen and their elements, Technische Hogeschool, Eindhoven, The Netherlands, May 1960, 50 pp.
- C. J. Bouwkamp, A. J. W. Duijvestijn and J. Haubrich, Catalogue of simple perfect squared rectangles of orders 9 through 18, Philips Research Laboratories, Eindhoven, The Netherlands, 1964 (unpublished) vols 1-12, 3090 pp.
- A. J. W. Duijvestijn, Fast calculation of inverse matrices occurring in squared rectangle calculation, Philips Res. Rep. 30 (1975), 329-339.
- M. E. Lines, Think of a Number, Institute of Physics, London, 1990, p. 43.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. T. Tutte, Squaring the Square, in M. Gardner's 'Mathematical Games' column in Scientific American 199, Nov. 1958, pp. 136-142, 166. Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250 [sequence p. 207], and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-7 [sequence p. 162].
Links
- S. E. Anderson, Perfect Squared Rectangles and Squared Squares.
- C. J. Bouwkamp, On the dissection of rectangles into squares (Papers I-III), Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, Paper I, 49 (1946), 1176-1188 (=Indagationes Math., v. 8 (1946), 724-736); Paper II, 50 (1947), 58-71 (=Indagationes Math., v. 9 (1947), 43-56); Paper III, 50 (1947), 72-78 (=Indagationes Math., v. 9 (1947), 57-63).
- C. J. Bouwkamp, On the construction of simple perfect squared squares, Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, 50 (1947), 1296-1299 (=Indagationes Math., v. 9 (1947), 622-625).
- C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of orders 21 through 25, EUT Report 92-WSK-03, Eindhoven University of Technology, Eindhoven, The Netherlands, November 1992.
- C. J. Bouwkamp, A. J. W. Duijvestijn and P. Medema, Tables relating to simple squared rectangles of orders nine through fifteen, Technische Hogeschool, Eindhoven, The Netherlands, August 1960, ii + 360 pp. Reprinted in EUT Report 86-WSK-03, January 1986. [Sequence p. i.]
- C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971.
- R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J., 7 (1940), 312-340. Reprinted in I. Gessel and G.-C. Rota (editors), Classic papers in combinatorics, Birkhäuser Boston, 1987, pp. 88-116. [Pp. 324-5 of the original article have counts up to a(12).]
- A. J. W. Duijvestijn, Electronic Computation of Squared Rectangles, Thesis, Technische Hogeschool, Eindhoven, Netherlands, 1962. Reprinted in Philips Res. Rep. 17 (1962), 523-612.
- I. Gambini, Quant aux carrés carrelés, Thesis, Université de la Méditerranée Aix-Marseille II, 1999, p. 24. [Number of simple rectangles excludes squares in separate column (from order 21).]
- D. Moews, Squared rectangles
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- J. H. van Lint, Letter to N. J. A. Sloane, N.D.
- Eric Weisstein's World of Mathematics, Perfect Square Dissection.
- Index entries for squared rectangles
- Index entries for squared squares
Formula
From Stuart E Anderson, Mar 02 2011, Feb 03 2024: (Start)
In "A Census of Planar Maps", p. 267, William Tutte gave a conjectured asymptotic formula for the number of perfect squared rectangles where n is the number of elements in the dissection (the order):
Conjecture: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)). (End)
Extensions
Definition corrected to include 'simple'. 'Simple' and 'perfect' defined in comments. - Geoffrey H. Morley, Mar 11 2010
Corrected a(18) and extended terms to order 21. All 3-connected planar graphs up to 22 edges used to generate dissections. Imperfect squared rectangles, compound squared rectangles, and all squared squares filtered out leaving simple perfect squared rectangles. - Stuart E Anderson, Mar 2011
Corrected a(18) to a(21) after removing last remaining compounds. - Stuart E Anderson, Apr 10 2011
Added a(22), a(23) and a(24) from Ian Gambini's thesis and corrected a(22). Added I. Gambini's thesis reference. - Stuart E Anderson, May 08 2011
Added some additional references, previous correction to a(22) is an increase of 4 based on a new count of order 22. - Stuart E Anderson, Jul 13 2012
Terms a(21)-a(24) corrected to include squares by Geoffrey H. Morley, Oct 17 2012
a(22)=17633773 from Stuart E Anderson confirmed by Geoffrey H. Morley, Nov 28 2012
a(23)-a(24) from Gambini confirmed by Stuart E Anderson, Dec 07 2012
a(25) from Stuart E Anderson, May 07 2024
a(26) from Stuart E Anderson, Jul 28 2024
Comments