A006983
Number of simple perfect squared squares of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 12, 26, 160, 441, 1152, 3001, 7901, 20566, 54541, 144161, 378197, 990981, 2578081, 6674067, 17086918
Offset: 1
- J.-P. Delahaye, Les inattendus mathématiques, Belin-Pour la Science, Paris, 2004, pp. 95-96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stuart E. Anderson, Perfect Squared Rectangles and Squared Squares
- Stuart E. Anderson, Simple perfect squared squares in orders 27 to 37 - methods used and people involved.
- C. J. Bouwkamp, On some new simple perfect squared squares, Discrete Math. 106-107 (1992) 67-75.
- C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of orders 21 through 25, EUT Report 92-WSK-03, Eindhoven University of Technology, Eindhoven, The Netherlands, November 1992.
- C. J. Bouwkamp and A. J. W. Duijvestijn, Album of Simple Perfect Squared Squares of order 26, EUT Report 94-WSK-02, Eindhoven University of Technology, Eindhoven, The Netherlands, December 1994.
- C. J. Bouwkamp, A. J. W. Duijvestijn, & N. J. A. Sloane, Correspondence, 1971.
- G. Brinkmann and B. D. McKay, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem., 58 (2007), 323-357.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]
- A. J. W. Duijvestijn, Illustration for a(21)=1 (The unique simple squared square of order 21. Reproduced with permission of the discoverer.)
- A. J. W. Duijvestijn, Simple perfect squared squares and 2x1 squared rectangles of orders 21 to 24, J. Combin. Theory Ser. B 59 (1993), 26-34.
- A. J. W. Duijvestijn, Simple perfect squared squares and 2x1 squared rectangles of order 25, Math. Comp. 62 (1994), 325-332. doi:10.1090/S0025-5718-1994-1208220-9
- A. J. W. Duijvestijn, Simple perfect squares and 2x1 squared rectangles of order 26, Math. Comp. 65 (1996), 1359-1364. doi:10.1090/S0025-5718-96-00705-3 [TableI List of Simple Perfect Squared Squares of order 26 and TableII List of Simple Perfect Squared 2x1 Rectangles of order 26 are now on squaring.net and no longer located as described in the paper.]
- I. Gambini, Quant aux carrés carrelés, Thesis, Université de la Méditerranée Aix-Marseille II, 1999, p. 25.
- Ed Pegg Jr., Advances in Squared Squares, Wolfram Community Bulletin, Jul 23 2020
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
- Index entries for squared squares
Leading term changed from 0 to 1, Apr 15 1996
Leading term changed back to 0, Dec 25 2010 (cf.
A178688)
a(29) changed to 7901, identified a duplicate tiling in order 29. -
Stuart E Anderson, Jan 07 2012
a(28) changed to 3000, identified a duplicate tiling in order 28. -
Stuart E Anderson, Jan 14 2012
a(28) changed back to 3001 after a complete recount of order 28 SPSS recalculated from c-nets with cleansed data, established the correct total of 3001. -
Stuart E Anderson, Jan 24 2012
A002962
Number of simple imperfect squared squares of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 5, 15, 19, 57, 72, 274, 491, 1766, 3679, 11158, 24086, 64754, 132598, 326042, 667403, 1627218, 3508516
Offset: 1
- C. J. Bouwkamp, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stuart Anderson, Simple Imperfect Squared Squares.
- C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971
- A. J. W. Duijvestijn, Electronic Computation of Squared Rectangles, Thesis, Technische Hogeschool, Eindhoven, Netherlands, 1962. Reprinted in Philips Res. Rep., 17 (1962), 523-612. [Pp. 573-4 have simple imperfect squares up to order 19.]
- Index entries for squared squares
a(21) and a(22) corrected and terms extended to a(25) by
Stuart E Anderson, Apr 24 2011
a(21), a(22), a(25) corrected and a(26)-a(28) added by
Stuart E Anderson, Jul 11 2011
A014530
List of sizes of squares occurring in lowest order example of a perfect squared square.
Original entry on oeis.org
2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50
Offset: 1
Example from _Rainer Rosenthal_, Mar 25 2021: (Start)
.
Terms | 2 4 6 7 8 9 11 15 16 17 18 19 24 25 27 29 33 35 37 42 50
-------------------------------------------------------------------------
| <-- sort selected groups
-------------------------------------------------------------------------
(50,35,27) | . . . . . . . . . . . . . . 27 . . 35 . . 50
(8,19) | . . . . 8 . . . . . . 19 . . . . . .
(15,17,11) | . . . . . 11 15 . 17 . . . . . . .
(6,24) | . . 6 . . . . 24 . . . . .
(29,25,9,2)| 2 . . 9 . . 25 29 . . .
(7,18) | . 7 . 18 . . .
(16) | . 16 . . .
(42) | . . . 42
(4,37) | 4 . 37
(33) | 33
_________________________________________________________________________
Groups of terms selected and sorted for the Bouwkamp piling
.
The Bouwkamp code says how to pile up the squares in order to tile the square with side length 50 + 35 + 27 = 112. The procedure is beautifully animated in "Eric Weisstein's World of Mathematics" entry - see link.
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego, 1995, Fig. M4482.
- I. Stewart, Squaring the Square, Scientific Amer., 277, July 1997, pp. 94-96.
- Stuart E. Anderson, Catalogues of Perfect Squared Squares
- C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of orders 21 through 25, EUT Report 92-WSK-03, Eindhoven University of Technology, Eindhoven, The Netherlands, November 1992.
- C. J. Bouwkamp and A. J. W. Duijvestijn, Album of Simple Perfect Squared Squares of order 26, EUT Report 94-WSK-02, Eindhoven University of Technology, Eindhoven, The Netherlands, December 1994.
- A. J. W. Duijvestijn, Simple perfect square of lowest order, J. Combin. Theory Ser. B 25 (1978), 240-243.
- Gergely Földvári, Photo of my artwork (2022) depicting the lowest order perfect squared square using 21 distinct colors
- N. D. Kazarinoff and R. Weitzenkamp, On the existence of compound perfect squared squares of small order, J. Combin. Theory Ser. B 14 (1973).163-179. [A compound perfect squared square must contain at least 22 subsquares.]
- Trinity College Mathematical Society, The Squared Square
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
- Index entries for squared squares
A217153
Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 48, 264, 1256, 5396, 22540, 92060, 370788
Offset: 1
Cf.
A217152 (counts symmetries of squared subrectangles as equivalent).
A217154
Number of perfect squared rectangles of order n up to symmetries of the rectangle.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 62, 235, 821, 2868, 10193, 36404, 130174, 466913, 1681999, 6083873
Offset: 1
a(10) = 14 comprises the A002839(10) = 6 simple perfect squared rectangles (SPSRs) of order 10 and the 8 trivially compound perfect squared rectangles which each comprises one of the two order 9 SPSRs and one other square.
- See crossrefs for references and links.
Cf.
A110148 (counts symmetries of any squared subrectangles as equivalent).
A002881
Number of simple imperfect squared rectangles of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 9, 34, 104, 283, 953, 3029, 9513, 30359, 98969, 323646, 1080659, 3668432, 12608491, 43745771, 153812801
Offset: 1
- C. J. Bouwkamp, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. T. Tutte, Squaring the Square, in M. Gardner's "Mathematical Games" column in Scientific American 199, Nov. 1958, pp. 136-142, 166, Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250 [sequence on p. 207], and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-187 [sequence on p. 162].
- S. E. Anderson, Simple Imperfect Squared Rectangles. [Nonsquare rectangles only]
- S. E. Anderson, Simple Imperfect Squared Squares.
- C. J. Bouwkamp, A. J. W. Duijvestijn and P. Medema, Tables relating to simple squared rectangles of orders nine through fifteen, Technische Hogeschool, Eindhoven, The Netherlands, August 1960, ii + 360 pp. Reprinted in EUT Report 86-WSK-03, January 1986. [Sequence p. i.]
- C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971.
- Eric Weisstein's World of Mathematics, Perfect Rectangle.
- Index entries for squared rectangles
- Index entries for squared squares
Edited ("simple" added to the definition, definition of "simple" given in the comments), terms a(13), a(15), a(16), a(17), and a(18) corrected, and terms extended to a(20) by
Stuart E Anderson, Mar 09 2011
Sequence reverted to the one in Bouwkamp et al. (1960), Gardner (1961), Sloane (1973), and Sloane & Plouffe (1995), which includes simple imperfect squares, by
Geoffrey H. Morley, Oct 17 2012
A110148
Number of perfect squared rectangles of order n up to symmetries of the rectangle and of its subrectangles if any.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 38, 127, 408, 1375, 4783, 16645, 58059, 203808, 722575
Offset: 1
Tanya Khovanova, Feb 18 2007
- C. J. Bouwkamp, On the dissection of rectangles into squares (Papers I-III), Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, Paper I, 49 (1946), 1176-1188 (=Indagationes Math., v. 8 (1946), 724-736); Paper II, 50 (1947), 58-71 (=Indagationes Math., v. 9 (1947), 43-56); Paper III, 50 (1947), 72-78 (=Indagationes Math., v. 9 (1947), 57-63). [Paper I has terms up to a(12) and an incorrect value for a(13) on p. 1178.]
- C. J. Bouwkamp, On the construction of simple perfect squared squares, Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., Ser. A, 50 (1947), 1296-1299 (=Indagationes Math., v. 9 (1947), 622-625). [Correct terms up to a(13) on p. 1299.]
- I. M. Yaglom, How to dissect a square? (in Russian), Nauka, Moscow, 1968. In djvu format (1.7M), also as this pdf (9.5M). [Terms up to a(13) on pp. 26-7.]
- Index entries for squared rectangles
- Index entries for squared squares
Cf.
A217154 (counts symmetries of any subrectangles as distinct).
A217152
Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle and its subrectangles.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 46, 191, 781, 3161, 15002
Offset: 1
Cf.
A217153 (counts symmetries of subrectangles as distinct).
A160911
a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.
Original entry on oeis.org
1, 1, 2, 5, 11, 29, 84, 267, 921, 3481, 14322, 62306, 285845, 1362662, 6681508, 33483830
Offset: 1
From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start)
.
|A|
|A B| |B|
|C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1)
|D|
.
|A A|
|A A A| |A A|
|A A A| |B B|
|A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1)
|B C D| |C D|
.
|A A A|
|A A A| <================= 3 X 3 minor A
|A A A| 2 X 2 minor B
|B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C
|B B D| 1 X 1 minor D
________________________________________________________
a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4)
and as p X q matrices with t_i X t_i minors
.
Example configurations for a(6) = 29:
.
|A A A A|
|A A A A|
|A A A A|
|A A B| |A B| |A A A A|
|A A C| |C D| |B B C D|
|D E F| |E F| |B B E F|
______________________________________________
(3 X 3: (3 X 2: (6 X 4:
2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1)
. _________________________
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | 6 | |
|A A A A A A B B B B B B B| | | 7 |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| |___________| |
|C C C C C D B B B B B B B| | |1|_____________|
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| | 5 | 4 | 4 |
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| |_________|_______|_______|
_____________________________ _____________________________
(13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1)
[rotated by 90 degrees] [alternate visualization]
.(End)
Cf.
A002839,
A005670,
A113881,
A210517,
A217156,
A219924,
A221843,
A221844,
A221845,
A340726,
A342558,
A350237.
A219766
Number of nonsquare simple perfect squared rectangles of order n up to symmetry.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 22, 67, 213, 744, 2609, 9016, 31426, 110381, 390223, 1383905, 4931307, 17633765, 63301415, 228130900, 825228950, 2994833413
Offset: 1
-
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
A002839 = A@002839;
A006983 = A@006983;
a[n_] := A002839[[n]] - A006983[[n]];
a /@ Range[24] (* Jean-François Alcover, Jan 13 2020 *)
Showing 1-10 of 17 results.
Comments