A014530
List of sizes of squares occurring in lowest order example of a perfect squared square.
Original entry on oeis.org
2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50
Offset: 1
Example from _Rainer Rosenthal_, Mar 25 2021: (Start)
.
Terms | 2 4 6 7 8 9 11 15 16 17 18 19 24 25 27 29 33 35 37 42 50
-------------------------------------------------------------------------
| <-- sort selected groups
-------------------------------------------------------------------------
(50,35,27) | . . . . . . . . . . . . . . 27 . . 35 . . 50
(8,19) | . . . . 8 . . . . . . 19 . . . . . .
(15,17,11) | . . . . . 11 15 . 17 . . . . . . .
(6,24) | . . 6 . . . . 24 . . . . .
(29,25,9,2)| 2 . . 9 . . 25 29 . . .
(7,18) | . 7 . 18 . . .
(16) | . 16 . . .
(42) | . . . 42
(4,37) | 4 . 37
(33) | 33
_________________________________________________________________________
Groups of terms selected and sorted for the Bouwkamp piling
.
The Bouwkamp code says how to pile up the squares in order to tile the square with side length 50 + 35 + 27 = 112. The procedure is beautifully animated in "Eric Weisstein's World of Mathematics" entry - see link.
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego, 1995, Fig. M4482.
- I. Stewart, Squaring the Square, Scientific Amer., 277, July 1997, pp. 94-96.
- Stuart E. Anderson, Catalogues of Perfect Squared Squares
- C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of orders 21 through 25, EUT Report 92-WSK-03, Eindhoven University of Technology, Eindhoven, The Netherlands, November 1992.
- C. J. Bouwkamp and A. J. W. Duijvestijn, Album of Simple Perfect Squared Squares of order 26, EUT Report 94-WSK-02, Eindhoven University of Technology, Eindhoven, The Netherlands, December 1994.
- A. J. W. Duijvestijn, Simple perfect square of lowest order, J. Combin. Theory Ser. B 25 (1978), 240-243.
- Gergely Földvári, Photo of my artwork (2022) depicting the lowest order perfect squared square using 21 distinct colors
- N. D. Kazarinoff and R. Weitzenkamp, On the existence of compound perfect squared squares of small order, J. Combin. Theory Ser. B 14 (1973).163-179. [A compound perfect squared square must contain at least 22 subsquares.]
- Trinity College Mathematical Society, The Squared Square
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
- Index entries for squared squares
A160911
a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.
Original entry on oeis.org
1, 1, 2, 5, 11, 29, 84, 267, 921, 3481, 14322, 62306, 285845, 1362662, 6681508, 33483830
Offset: 1
From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start)
.
|A|
|A B| |B|
|C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1)
|D|
.
|A A|
|A A A| |A A|
|A A A| |B B|
|A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1)
|B C D| |C D|
.
|A A A|
|A A A| <================= 3 X 3 minor A
|A A A| 2 X 2 minor B
|B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C
|B B D| 1 X 1 minor D
________________________________________________________
a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4)
and as p X q matrices with t_i X t_i minors
.
Example configurations for a(6) = 29:
.
|A A A A|
|A A A A|
|A A A A|
|A A B| |A B| |A A A A|
|A A C| |C D| |B B C D|
|D E F| |E F| |B B E F|
______________________________________________
(3 X 3: (3 X 2: (6 X 4:
2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1)
. _________________________
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| | 6 | |
|A A A A A A B B B B B B B| | | 7 |
|A A A A A A B B B B B B B| | | |
|A A A A A A B B B B B B B| |___________| |
|C C C C C D B B B B B B B| | |1|_____________|
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| | 5 | 4 | 4 |
|C C C C C E E E E F F F F| | | | |
|C C C C C E E E E F F F F| |_________|_______|_______|
_____________________________ _____________________________
(13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1)
[rotated by 90 degrees] [alternate visualization]
.(End)
Cf.
A002839,
A005670,
A113881,
A210517,
A217156,
A219924,
A221843,
A221844,
A221845,
A340726,
A342558,
A350237.
A360030
a(n) is the minimum number of equal resistors needed in an electrical network so that n nodes can be selected in this network such that there are n*(n-1)/2 distinct resistances 0 < R < oo between the selected nodes.
Original entry on oeis.org
1, 3, 5, 8, 10, 11, 12, 14, 15, 16, 18, 19, 21
Offset: 2
a(2) = 1, [[1,2]]
.
1 2
O----R1R----O
R_12 = 1
.
a(3) = 3, [[1,2]^2,[2,3]]
.
1 .---R1R---. 2 3
O --| |-- O ---R3R--- O
.---R2R---.
.
R_12 = 1/2, R_13 = 3/2,
R_23 = 1
.
a(4) = 5, node 5 hidden, [[1,2],[2,3]^2,[3,5],[4,5]]
.
1 2 .---R2R---. 3 (5) 4
O ---R1R--- O --| |-- O ---R4R--- O ---R5R--- O
.---R3R---.
.
R_12 = 1, R_13 = 3/2, R_14 = 7/2,
R_23 = 1/2, R_24 = 5/2,
R_34 = 2
.
a(5) = 8, node 6 hidden,
[[1, 2], [1, 3]^2, [2, 3], [2, 4], [3, 6], [4, 5], [4, 6]]
.
1 2 4 5
O-----R1R-----O----R5R----O----R8R----O
| | |
| R4R R7R
.---R2R---. | |
| |---O----R6R----O
.---R3R---. 3 (6)
.
R_12 = 5/9, R_13 = 7/18, R_14 = 19/18, R_15 = 37/18,
R_23 = 1/2, R_24 = 13/18, R_25 = 31/18,
R_34 = 8/9, R_35 = 17/9,
R_45 = 1
- IBM Research, Electric networks in graphs, Ponder This Challenge, March 2025, asked for the only network corresponding to a(10)=15 and 4 networks for a(12)=18.
- Hugo Pfoertner, Illustrated examples for the terms a(6), a(7), a(8), 17 Feb 2023.
- Hugo Pfoertner, Illustrated examples for the terms a(9), a(10), a(11), 3 Apr 2023.
- Hugo Pfoertner, Illustration of a(12)=18, 8 Jan 2024, showing 3 planar and 5 non-planar networks, 4 of which were required to solve the bonus question of IBM's Ponder This Challenge.
- Hugo Pfoertner and Klaus Nagel, Illustration of a(14)=21, 21 Aug 2025.
A347282
a(n) is the least number of unit resistors in an electrical network with total resistance A007305(n)/A007306(n) such that all currents through the resistors are distinct and > 0.
Original entry on oeis.org
18, 19, 20, 18, 26, 19, 17, 19
Offset: 1
n A007305(n)/ a(n) Edge list of network graph (example)
A007306(n)
1 1/1 18 [[1, 5], [1, 6], [1, 7], [2, 5], [2, 7], [2, 8],
[3, 6], [3, 7], [3, 8], [3, 9], [10, 6], [4, 8],
[4, 9], [5, 8], [5, 9], [6, 9], [7, 9], [10, 4]]
Poles: [5, 10]
2 1/2 19 see linked file for description of solutions
3 1/3 20
4 2/3 18
5 1/4 26
6 2/5 19
7 3/5 17
8 3/4 19
9 1/5 unknown
A360031
a(n) is the number of unlabeled 2-connected graphs with n edges containing at least one pair of nodes with resistance distance 1 when all edges are replaced by unit resistors.
Original entry on oeis.org
0, 1, 1, 1, 2, 5, 14, 35, 111, 341, 1130, 3969, 15002, 58429, 239045, 1012241
Offset: 3
Showing 1-5 of 5 results.
Comments