cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217153 Number of nontrivially compound perfect squared rectangles of order n up to symmetries of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 48, 264, 1256, 5396, 22540, 92060, 370788
Offset: 1

Views

Author

Geoffrey H. Morley, Sep 27 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle, compound if it does, and trivially compound if a constituent square has the same side length as a side of the squared rectangle under consideration.

Crossrefs

Cf. A217152 (counts symmetries of squared subrectangles as equivalent).

Extensions

a(19) and a(20) corrected (thanks to Stuart E Anderson's computations which show I misinterpreted Gambini's counts) by Geoffrey H. Morley, Oct 12 2012