A217161 a(n) is the least value of k such that the decimal expansion of n^k contains six consecutive identical digits.
971, 538, 486, 1087, 371, 175, 324, 269, 6, 482, 362, 327, 196, 516, 243, 350, 288, 144, 6, 895, 822, 238, 481, 1137, 281, 180, 127, 358, 6, 286, 454, 286, 347, 110, 481, 346, 314, 448, 6, 565, 388, 275, 90, 622, 231, 451, 37, 255, 6, 481, 202, 191, 472, 308
Offset: 2
Links
- V. Raman, Table of n, a(n) for n = 2..10000
Programs
-
Mathematica
Table[k = 1; While[! MemberQ[Partition[Differences[IntegerDigits[n^k]], 5, 1], {0, 0, 0, 0, 0}], k++]; k, {n, 2, 100}] (* T. D. Noe, Oct 01 2012 *) lk[n_]:=Module[{k=1,t=Table[x_,6]},While[SequenceCount[IntegerDigits[ n^k],t]<1,k++];k]; Array[lk,60,2] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 18 2018 *)