A217162 a(n) is the least value of k such that the decimal expansion of n^k contains seven consecutive identical digits.
972, 2124, 486, 2786, 1503, 1961, 324, 1062, 7, 1323, 1938, 512, 1053, 2600, 243, 2474, 1486, 940, 7, 1085, 1068, 238, 2908, 1393, 699, 708, 704, 1566, 7, 286, 1711, 935, 2225, 1190, 1357, 692, 1182, 448, 7, 885, 1349, 815, 647, 1675, 1131, 548, 333, 1154, 7
Offset: 2
Links
- V. Raman, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
Table[k = 1; While[! MemberQ[Partition[Differences[IntegerDigits[n^k]], 6, 1], {0, 0, 0, 0, 0, 0}], k++]; k, {n, 2, 100}] (* T. D. Noe, Oct 01 2012 *) scd[n_]:=Module[{k=1},While[FreeQ[IntegerDigits[n^k],{_,x_,x_,x_,x_,x_,x_,x_,_}],k++];k]; Array[scd,50,2] (* Harvey P. Dale, May 23 2016 *)