A217163 a(n) is the least value of k such that the decimal expansion of n^k contains eight or more consecutive identical digits.
8554, 7720, 4277, 2790, 8533, 6176, 4442, 3860, 8, 2983, 2430, 5482, 1053, 5030, 3502, 5781, 3982, 4706, 8, 2568, 4850, 2740, 4549, 1395, 699, 2960, 2679, 3197, 8, 4057, 2709, 3115, 3436, 1190, 6629, 692, 3274, 5773, 8, 6997, 3536, 5936, 647, 3204, 1369, 1587
Offset: 2
Links
- V. Raman, Table of n, a(n) for n = 2..100
Programs
-
Mathematica
Table[k = 1; While[! MemberQ[Partition[Differences[IntegerDigits[n^k]], 7, 1], {0, 0, 0, 0, 0, 0, 0}], k++]; k, {n, 2, 50}] (* T. D. Noe, Oct 01 2012 *) lvk8[n_]:=Module[{k=Ceiling[Log[n,11111111]]},While[Max[Length/@ Split[ IntegerDigits[n^k]]]<8,k++];k] Array[lvk8, 50, 2] (* Harvey P. Dale, Jul 31 2013 *)
Extensions
Definition clarified by Harvey P. Dale, Jul 31 2013