A217195 Primes p such that p-2 is the greatest semiprime less than p.
17, 37, 41, 53, 67, 71, 79, 89, 97, 113, 131, 157, 163, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 397, 409, 419, 439, 449, 487, 491, 499, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 733, 739, 751, 757, 769, 773, 787, 809
Offset: 1
Keywords
Examples
487 is prime, 486 = 2*3^5 is not semiprime and 485 = 5*97 is semiprime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Prime[Range[200]], ! SemiPrimeQ[# - 1] && SemiPrimeQ[# - 2] &] (* T. D. Noe, Sep 27 2012 *)
-
PARI
forprime(p=3, 9999, bigomega(p-2)==2 && bigomega(p-1)!=2 & print1(p", "))
Comments