cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217201 Number of simple unlabeled graphs with n nodes of 2 colors whose components are cycles.

Original entry on oeis.org

1, 0, 0, 4, 6, 8, 23, 42, 83, 166, 324, 622, 1236, 2366, 4595, 8900, 17225, 33212, 64376, 124360, 240819, 466284, 904149, 1753782, 3407225, 6623274, 12892131, 25116456, 48987833, 95633480, 186891367, 365549578, 715661254, 1402246154, 2749778317, 5396266284
Offset: 0

Views

Author

Geoffrey Critzer, Sep 27 2012

Keywords

Crossrefs

Programs

  • Maple
    with (numtheory):
    b:= n-> `if`(n<3, 0, add(phi(d)*2^(n/d)/(2*n), d=divisors(n))+
        `if`(irem(n, 2)=1, 2^((n-1)/2), 2^(n/2-1)+2^(n/2-2))):
    a:= proc(n) option remember; local d, j; `if`(n=0, 1,
          add(add(d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2012
  • Mathematica
    Needs["Combinatorica`"]
    a=Expand[Table[nn=n;CycleIndex[DihedralGroup[nn],s]/.Table[s[i]->2,{i,1,nn}],{n,1,30}]];
    nn=30;p=Product[1/(1- x^i)^a[[i]],{i,3,nn}];CoefficientList[Series[p,{x,0,nn}],x]
    (* Second program: *)
    b[n_] := If[n < 3, 0, Sum[EulerPhi[d]*2^(n/d)/(2*n), {d, Divisors[n]}] +  If[Mod[n, 2] == 1, 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)]];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)

Formula

EULER transform of 0,0,4,6,8,13,30,... A000029.