A217216 Dimension of algebraic generators of the algebra "Baxter" of order n.
0, 1, 1, 3, 11, 47, 221, 1113, 5903, 32607, 186143, 1092015, 6555515, 40137219, 249984481, 1580468321, 10125395007, 65639436955, 430048061915, 2844592155631, 18979693010495, 127641472658231, 864645413540671, 5896221199266519, 40455246946190079
Offset: 0
Keywords
Links
- G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
- S. Giraudo, Algebraic and combinatorial structures on Baxter permutations, DMTCS proc. AO, FPSAC 2011 Rykjavik, (2011) 387-398
- S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, arXiv:1204.4776 [math.CO], 2012.
- S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, Journal of Algebra, Volume 360, 15 June 2012, Pages 115-157.
Crossrefs
Cf. A001181.
Programs
-
Mathematica
nmax = 25; 1-1/(1+Sum[HypergeometricPFQ[{-1-n, 1-n, -n}, {2, 3}, -1] x^n, {n, nmax}]) + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 26 2018 *)
-
PARI
baxter(n) = sum(k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2))); lista(m) = {u = t + t*O(t^m); b = 1 + sum(n=1, m, baxter(n)*u^n); gfbc = 1 - 1/b; for (n=0, m, print1(polcoeff(gfbc, n, t), ", "));} \\ Michel Marcus, Feb 16 2013
Formula
Giraudo gives a generating function.
a(n) ~ c * 8^n / n^4, where c = 4.21514033443045415032... - Vaclav Kotesovec, Apr 27 2024
Extensions
More terms from Michel Marcus, Feb 16 2013