cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033685 Theta series of hexagonal lattice A_2 with respect to deep hole.

Original entry on oeis.org

0, 3, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 9, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 3*x + 3*x^4 + 6*x^7 + 6*x^13 + 3*x^16 + 6*x^19 + 3*x^25 + 6*x^28 + ...
G.f. = 3*q^(1/3) + 3*q^(4/3) + 6*q^(7/3) + 6*q^(13/3) + 3*q^(16/3) + 6*q^(19/3) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[Mod[n, 3] != 1, 0, 3*DivisorSum[n, KroneckerSymbol[#, 3]&]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 03 2015, adapted from PARI *)
    s = 3q*(QPochhammer[q^9]^3/QPochhammer[q^3])+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
  • PARI
    {a(n) = if( (n<0) || (n%3 != 1), 0, 3 * sumdiv( n, d, kronecker( d, 3)))}; \\ Michael Somos, Jul 16 2005
    
  • PARI
    {a(n) = my(A); if( (n<0) || (n%3 != 1), 0, n = n\3; A = x * O(x^n); 3 * polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, Jul 16 2005

Formula

a(3*n) = a(3*n + 2) = 0.
a(3*n + 1) = A005882(n) = 3 * A033687(n) = -A005928(3*n + 1) = A004016(3*n + 1) / 2.
Expansion of 3 * eta(q^3)^3 / eta(q) in powers of q^(1/3).
G.f.: 3 * x * Product_{k>0} (1 - x^(9*k))^3 / (1 - x^(3*k)) = 3 * Sum_{k>0} x^k * (1 - x^k) * (1 - x^(2*k)) * (1 - x^(4*k)) / (1 - x^(9*k)). - Michael Somos, Jul 15 2005
Expansion of c(x^3) in powers of x where c(x) is a cubic AGM theta function. - Michael Somos, Oct 17 2006
From Michael Somos, Dec 25 2011: (Start)
G.f.: Sum_{i, j in Z} x^(3 * (i^2 + i*j + j^2 + i + j) + 1).
G.f.: Sum_{i, j, k} x^(3 * Q(i, j, k) - 2) where Q(i, j, k) = i*i + j*j + k*k + i*j + i*k + j*k and the sum is over all integer i, j, k where i + j + k = 1. (End)
a(n) = A217219(n)/2. - N. J. A. Sloane, Oct 05 2012
Expansion of 2 * x * psi(x^6) * f(x^6, x^12) + x * phi(x^3) * f(x^3, x^15) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 09 2018
From Amiram Eldar, Oct 13 2022: (Start)
a(n) = 3*A045833(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). (End)

A045833 Expansion of eta(q^9)^3 / eta(q^3) in powers of q.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + q^25 + 2*q^28 + 2*q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^9]^3 / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    f[p_, e_] := If[Mod[p, 3] == 1, e + 1, (1 + (-1)^e)/2]; f[3, e_] := 0; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 0] (* Amiram Eldar, Oct 13 2022 *)
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A=factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p!=3, if( p%3==1, e+1, !(e%2))))))}; \\ Michael Somos, May 25 2005
    
  • PARI
    {a(n) = local(A); if( (n<1) || (n%3!=1), 0, n = (n-1)/3; A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, May 25 2005

Formula

From Michael Somos, May 25 2005: (Start)
Euler transform of period 9 sequence [ 0, 0, 1, 0, 0, 1, 0, 0, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w - 2*u*w^2 - v^3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1*u3^2 + u1*u6^2 - u1*u3*u6 - u2^2*u3.
a(3*n) = a(3*n + 2) = 0. a(3*n + 1) = A033687(n). a(6*n + 1) = A097195(n). 3*a(n) = A033685(n).
Multiplicative with a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1+(-1)^e)/2 if p == 2 (mod 3).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2*u3^2 + 2*u2*u3*u6 + 4*u2*u6^2 - u1^2*u6. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(9*sqrt(3)) = 0.403066... . - Amiram Eldar, Oct 13 2022
Dirichlet g.f.: L(chi_1,s)*L(chi_{-1},s), where chi_1 = A011655 and chi_{-1} = A102283 are respectively the principal and the non-principal Dirichlet character modulo 3. For the formula of the sequence whose Dirichlet g.f. is Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k, see A378006. This sequence is the case k = 3. - Jianing Song, Nov 13 2024

A338992 Number of vertices of a hexagonal tessellation that lie on subsequent circles centered at the center of one hexagon.

Original entry on oeis.org

0, 6, 6, 12, 12, 6, 12, 6, 12, 12, 12, 12, 18, 12, 12, 6, 12, 12, 12, 12, 24, 12, 6, 12, 12, 12, 6, 12, 12, 24, 12, 12, 12, 12, 12, 18, 12, 12, 12, 12, 18, 12, 12, 12, 24, 12, 12, 12, 12, 24, 6, 24, 12, 12, 12, 12, 6, 12, 24, 12, 12, 12, 12, 12, 12, 12, 24, 12, 18
Offset: 0

Views

Author

Szymon Lukaszyk, Nov 17 2020

Keywords

Comments

Radii of these circles are square roots of A202822.
This is A217219 with zeros dropped, except for a(0). - Andrey Zabolotskiy, Jun 21 2022

Crossrefs

Cf. A202822, A217219, A338947 (similar but with circles centered at a vertex of one hexagon).
Showing 1-3 of 3 results.