A202822
Numbers of the form 3*(x^2 + xy + y^2 + x + y) + 1 where x and y are integers.
Original entry on oeis.org
1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 43, 49, 52, 61, 64, 67, 73, 76, 79, 91, 97, 100, 103, 109, 112, 121, 124, 127, 133, 139, 148, 151, 157, 163, 169, 172, 175, 181, 193, 196, 199, 208, 211, 217, 223, 229, 241, 244, 247, 256, 259, 268, 271, 277, 283, 289, 292
Offset: 1
-
a202822 n = a202822_list !! (n-1)
a202822_list = filter ((== 1) . flip mod 3) a003136_list
-- Reinhard Zumkeller, Nov 16 2015
-
nf[{i_,j_}]:=3(i^2+i*j+j^2+i+j)+1; Union[nf/@Tuples[Range[-10,10],2]] (* Harvey P. Dale, Dec 31 2011 *)
-
isA(n) = if(n%3 == 0, 0, 0 != sumdiv( n, d, kronecker( -3, d)))
-
x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1(n, ", "))) \\ Altug Alkan, Nov 18 2015
-
is(n)=(n%3==1) && #bnfisintnorm(bnfinit(z^2+z+1), n); \\ Joerg Arndt, Jan 04 2016
-
list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if((x-y)%3, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
A033685
Theta series of hexagonal lattice A_2 with respect to deep hole.
Original entry on oeis.org
0, 3, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 9, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0
Offset: 0
G.f. = 3*x + 3*x^4 + 6*x^7 + 6*x^13 + 3*x^16 + 6*x^19 + 3*x^25 + 6*x^28 + ...
G.f. = 3*q^(1/3) + 3*q^(4/3) + 6*q^(7/3) + 6*q^(13/3) + 3*q^(16/3) + 6*q^(19/3) + ...
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
-
a[n_] := If[Mod[n, 3] != 1, 0, 3*DivisorSum[n, KroneckerSymbol[#, 3]&]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 03 2015, adapted from PARI *)
s = 3q*(QPochhammer[q^9]^3/QPochhammer[q^3])+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
-
{a(n) = if( (n<0) || (n%3 != 1), 0, 3 * sumdiv( n, d, kronecker( d, 3)))}; \\ Michael Somos, Jul 16 2005
-
{a(n) = my(A); if( (n<0) || (n%3 != 1), 0, n = n\3; A = x * O(x^n); 3 * polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, Jul 16 2005
A217219
Theta series of planar hexagonal net (honeycomb) with respect to deep hole.
Original entry on oeis.org
0, 6, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0
Offset: 0
-
terms = 105; s = 6 q QPochhammer[q^9]^3/QPochhammer[q^3] + O[q]^(terms+5); CoefficientList[s, q][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017, after Michael Somos *)
CoefficientList[Series[6 q QPochhammer[q^9]^3/QPochhammer[q^3], {q, 0, 100}], q] (* G. C. Greubel, Aug 10 2018 *)
-
my(q='q+O('q^100)); concat([0], Vec(6*q*eta(q^9)^3/eta(q^3))) \\ G. C. Greubel, Aug 10 2018
A378006
Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
See A378007 for more details.
-
A378006(n,k) = {
my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i,1] == 0, return(0));
my(d = znorder(Mod(f[i,1],k))); if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
res;}
A132978
Expansion of q^(-2/3) * (psi(-q^3) / psi(-q)^3) * (c(q^2) / 3) in powers of q where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.
Original entry on oeis.org
1, 3, 7, 15, 32, 63, 114, 201, 350, 591, 967, 1554, 2468, 3855, 5916, 8970, 13471, 20007, 29384, 42771, 61784, 88530, 125838, 177642, 249230, 347484, 481506, 663549, 909788, 1241127, 1684824, 2276781, 3063657, 4105275, 5478698, 7283709, 9648360, 12735471
Offset: 0
G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 32*x^4 + 63*x^5 + 114*x^6 + 201*x^7 + ...
G.f. = q^2 + 3*q^5 + 7*q^8 + 15*q^11 + 32*q^14 + 63*q^17 + 114*q^20 + ...
-
a[ n_] := SeriesCoefficient[ 2^(1/2) x^(-5/8) EllipticTheta[ 3, 0, x^3] QPochhammer[ x, -x] EllipticTheta[ 2, Pi/4, x^(3/2)]^3 / EllipticTheta[ 2, Pi/4, x^(1/2)]^4, {x, 0, n}] // Simplify;
nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^3 * (1-x^(3*k))^4 * (1+x^(6*k)) / ( (1-x^k)^4 * (1+x^k) * (1+x^(2*k))^3),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / ( eta(x + A) * eta(x^4 + A))^3, n))};
Showing 1-5 of 5 results.
Comments