cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A202822 Numbers of the form 3*(x^2 + xy + y^2 + x + y) + 1 where x and y are integers.

Original entry on oeis.org

1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 43, 49, 52, 61, 64, 67, 73, 76, 79, 91, 97, 100, 103, 109, 112, 121, 124, 127, 133, 139, 148, 151, 157, 163, 169, 172, 175, 181, 193, 196, 199, 208, 211, 217, 223, 229, 241, 244, 247, 256, 259, 268, 271, 277, 283, 289, 292
Offset: 1

Views

Author

Michael Somos, Dec 25 2011

Keywords

Comments

Closed under multiplication.
Löschian numbers of the form 3*k+1. - Altug Alkan, Nov 18 2015

Crossrefs

Subsequence of A003136, A260682 (subsequence).

Programs

  • Haskell
    a202822 n = a202822_list !! (n-1)
    a202822_list = filter ((== 1) . flip mod 3) a003136_list
    -- Reinhard Zumkeller, Nov 16 2015
  • Mathematica
    nf[{i_,j_}]:=3(i^2+i*j+j^2+i+j)+1; Union[nf/@Tuples[Range[-10,10],2]] (* Harvey P. Dale, Dec 31 2011 *)
  • PARI
    isA(n) = if(n%3 == 0, 0, 0 != sumdiv( n, d, kronecker( -3, d)))
    
  • PARI
    x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1(n, ", "))) \\ Altug Alkan, Nov 18 2015
    
  • PARI
    is(n)=(n%3==1) && #bnfisintnorm(bnfinit(z^2+z+1), n); \\ Joerg Arndt, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if((x-y)%3, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
    

Formula

A033685(n) != 0 if and only if n is in the set.

A033685 Theta series of hexagonal lattice A_2 with respect to deep hole.

Original entry on oeis.org

0, 3, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 9, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 6, 0
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 3*x + 3*x^4 + 6*x^7 + 6*x^13 + 3*x^16 + 6*x^19 + 3*x^25 + 6*x^28 + ...
G.f. = 3*q^(1/3) + 3*q^(4/3) + 6*q^(7/3) + 6*q^(13/3) + 3*q^(16/3) + 6*q^(19/3) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[Mod[n, 3] != 1, 0, 3*DivisorSum[n, KroneckerSymbol[#, 3]&]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 03 2015, adapted from PARI *)
    s = 3q*(QPochhammer[q^9]^3/QPochhammer[q^3])+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
  • PARI
    {a(n) = if( (n<0) || (n%3 != 1), 0, 3 * sumdiv( n, d, kronecker( d, 3)))}; \\ Michael Somos, Jul 16 2005
    
  • PARI
    {a(n) = my(A); if( (n<0) || (n%3 != 1), 0, n = n\3; A = x * O(x^n); 3 * polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, Jul 16 2005

Formula

a(3*n) = a(3*n + 2) = 0.
a(3*n + 1) = A005882(n) = 3 * A033687(n) = -A005928(3*n + 1) = A004016(3*n + 1) / 2.
Expansion of 3 * eta(q^3)^3 / eta(q) in powers of q^(1/3).
G.f.: 3 * x * Product_{k>0} (1 - x^(9*k))^3 / (1 - x^(3*k)) = 3 * Sum_{k>0} x^k * (1 - x^k) * (1 - x^(2*k)) * (1 - x^(4*k)) / (1 - x^(9*k)). - Michael Somos, Jul 15 2005
Expansion of c(x^3) in powers of x where c(x) is a cubic AGM theta function. - Michael Somos, Oct 17 2006
From Michael Somos, Dec 25 2011: (Start)
G.f.: Sum_{i, j in Z} x^(3 * (i^2 + i*j + j^2 + i + j) + 1).
G.f.: Sum_{i, j, k} x^(3 * Q(i, j, k) - 2) where Q(i, j, k) = i*i + j*j + k*k + i*j + i*k + j*k and the sum is over all integer i, j, k where i + j + k = 1. (End)
a(n) = A217219(n)/2. - N. J. A. Sloane, Oct 05 2012
Expansion of 2 * x * psi(x^6) * f(x^6, x^12) + x * phi(x^3) * f(x^3, x^15) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 09 2018
From Amiram Eldar, Oct 13 2022: (Start)
a(n) = 3*A045833(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). (End)

A217219 Theta series of planar hexagonal net (honeycomb) with respect to deep hole.

Original entry on oeis.org

0, 6, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 105; s = 6 q QPochhammer[q^9]^3/QPochhammer[q^3] + O[q]^(terms+5); CoefficientList[s, q][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017, after Michael Somos *)
    CoefficientList[Series[6 q QPochhammer[q^9]^3/QPochhammer[q^3], {q, 0, 100}], q] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    my(q='q+O('q^100)); concat([0], Vec(6*q*eta(q^9)^3/eta(q^3))) \\ G. C. Greubel, Aug 10 2018

Formula

a(n) = 2*A033685(n) = 6*A045833(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Oct 13 2022

Extensions

Name edited by Andrey Zabolotskiy, Jun 21 2022

A378006 Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jianing Song, Nov 14 2024

Keywords

Comments

For fixed k, we have Product_{chi} L(chi,s) = Product_{p not dividing k} 1/(1 - 1/p^(ord(p,k)*s))^(phi(k)/ord(p,k)), where phi = A000010 is the Euler totient function and ord(a,k) is the multiplicative order of a modulo k; see Section 3.4 of Chapter VI, Proposition 13, page 72 of J.-P. Serre, A Course in Arithmetic. Using the series expansion of 1/(1-x)^r, we get Product_{chi} L(chi,s) = Product_{p not dividing k} (Sum_{n>=0} binomial(n+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1)/p^(ord(p,k)*s)), giving us the formula to calculate T(n,k).
From the formula we can wee that T(n,k) = 0 unless n == 1 (mod k). A378007 is the condensed version giving only {T(k*n+1,k)}.

Examples

			Table starts
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
  1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ...
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ...
  1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ...
  1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ...
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
See A378007 for more details.
		

Crossrefs

Columns: A000012 (k=1), A000035 (k=2), A045833 (k=3), A008442 (k=4).
Cf. A378007.

Programs

  • PARI
    A378006(n,k) = {
    my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i,1] == 0, return(0));
    my(d = znorder(Mod(f[i,1],k))); if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
    res;}

Formula

Each column is multiplicative: T(p^e,k) = 0 if p divides k; 0 if e is not divisible by ord(p,k); binomial(e/ord(p,k)+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1) otherwise.
For odd k, T(2*k,n) = T(k,n) for odd n, 0 for even n.

A132978 Expansion of q^(-2/3) * (psi(-q^3) / psi(-q)^3) * (c(q^2) / 3) in powers of q where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 7, 15, 32, 63, 114, 201, 350, 591, 967, 1554, 2468, 3855, 5916, 8970, 13471, 20007, 29384, 42771, 61784, 88530, 125838, 177642, 249230, 347484, 481506, 663549, 909788, 1241127, 1684824, 2276781, 3063657, 4105275, 5478698, 7283709, 9648360, 12735471
Offset: 0

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 32*x^4 + 63*x^5 + 114*x^6 + 201*x^7 + ...
G.f. = q^2 + 3*q^5 + 7*q^8 + 15*q^11 + 32*q^14 + 63*q^17 + 114*q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(1/2) x^(-5/8) EllipticTheta[ 3, 0, x^3]  QPochhammer[ x, -x] EllipticTheta[ 2, Pi/4, x^(3/2)]^3 / EllipticTheta[ 2, Pi/4, x^(1/2)]^4, {x, 0, n}] // Simplify;
    nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^3 * (1-x^(3*k))^4 * (1+x^(6*k)) / ( (1-x^k)^4 * (1+x^k) * (1+x^(2*k))^3),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / ( eta(x + A) * eta(x^4 + A))^3, n))};

Formula

Expansion of q^(-2/3) * (psi(-q^3) / psi(-q)^3) * (c(q^2) / 3) in powers of q where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.
Expansion of psi(-x^3)^3 * f(-x, x^2) / psi(-x)^4 in powers of x where psi(), f(,) are Ramanujan theta functions.
Expansion of q^(-2/3) * (eta(q^2) * eta(q^6))^2 * eta(q^3) * eta(q^12) / ( eta(q)* eta(q^4) )^3 in powers of q.
Euler transform of period 12 sequence [ 3, 1, 2, 4, 3, -2, 3, 4, 2, 1, 3, 0, ...].
a(n) = A132975(3*n + 2).
Convolution of A132974 and A045833.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Showing 1-5 of 5 results.