cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003136 Loeschian numbers: numbers of the form x^2 + xy + y^2; norms of vectors in A2 lattice.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192
Offset: 1

Views

Author

Keywords

Comments

Equally, numbers of the form x^2 - xy + y^2. - Ray Chandler, Jan 27 2009
Also, numbers of the form X^2+3Y^2 (X=y+x/2, Y=x/2), cf. A092572. - Zak Seidov, Jan 20 2009
Theorem (Schering, Delone, Watson): The only positive definite binary quadratic forms that represent the same numbers are x^2+xy+y^2 and x^2+3y^2 (up to scaling). - N. J. A. Sloane, Jun 22 2014
Equivalently, numbers n such that the coefficient of x^n in Theta3(x)*Theta3(x^3) is nonzero. - Joerg Arndt, Jan 16 2011
Equivalently, numbers n such that the coefficient of x^n in a(x) (resp. b(x)) is nonzero where a(), b() are cubic AGM functions. - Michael Somos, Jan 16 2011
Relative areas of equilateral triangles whose vertices are on a triangular lattice. - Anton Sherwood (bronto(AT)pobox.com), Apr 05 2001
2 appended to a(n) (for positive n) corresponds to capsomere count in viral architectural structures (cf. A071336). - Lekraj Beedassy, Apr 14 2006
The triangle in A132111 gives the enumeration: n^2 + k*n + k^2, 0 <= k <= n.
The number of coat proteins at each corner of a triangular face of a virus shell. - Parthasarathy Nambi, Sep 04 2007
Numbers of the form (x^2 + y^2 + (x + y)^2)/2. If we let z = - x - y, then all the solutions to x^2 + y^2 + z^2 = k with x + y + z = 0 are k = 2a(n) for any n. - Jon Perry, Dec 16 2012
Sequence of divisors of the hexagonal lattice, except zero (where it is said that an integer n divides a lattice if there exists a sublattice of index n; example: 3 divides the hexagonal lattice). - Jean-Christophe Hervé, May 01 2013
Numbers of the form - (x*y + y*z + x*z) with x + y + z = 0. Numbers of the form x^2 + y^2 + z^2 - (x*y + y*z + x*z) = (x - y)*(x - z) + (y - x) * (y - z) + (z - x) * (z - y). - Michael Somos, Jun 26 2013
Equivalently, the existence spectrum of affine Mendelsohn triple systems, cf. A248107. - David Stanovsky, Nov 25 2014
Lame's solutions to the Helmholtz equation with Dirichlet boundary conditions on the unit-edged equilateral triangle have eigenvalues of the form: (x^2+x*y+y^2)*(4*Pi/3)^2. The actual set, starting at 1 and counting degeneracies, is given by A060428, e.g., the first degeneracy is 49 where (x,y)=(0,7) and (3,5). - Robert Stephen Jones, Oct 01 2015
Curvatures of spheres in one bowl of integers, the Loeschian spheres. Mod 12, numbers equal to 0, 1, 3, 4, 7, 9. - Ed Pegg Jr, Jan 10 2017
Norms of Eisenstein integers Z[omega] or k(rho). - Juris Evertovskis, Dec 07 2017
Named after the German economist August Lösch (1906-1945). - Amiram Eldar, Jun 10 2021
Starting from the second element, these and only these numbers of congruent equilateral triangles can be used to cover a regular tetrahedron without overlaps or gaps. - Alexander M. Domashenko, Feb 01 2025
This sequence is closed under multiplication: (x; y)*(u; v) = (x*v - y*u; x*u + y*(u + v)) for x*v - y*u >= 0 , (x; y)*(u; v) = (y*u - x*v; x*u + v*(x + y)) for x*v - y*u < 0. - Alexander M. Domashenko, Feb 03 2025

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 111.
  • Ivars Peterson, The Jungles of Randomness: A Mathematical Safari, John Wiley and Sons, (1998) pp. 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A092572 for numbers of form x^2 + 3 y^2 with positive x,y.
See A088534 for the number of representations.
Cf. A034020 (complement), A007645 (primes); partitions: A198726, A198727.

Programs

  • Haskell
    import Data.Set (singleton, union, fromList, deleteFindMin)
    a003136 n = a003136_list !! (n-1)
    a003136_list = f 0 $ singleton 0 where
    f x s | m < x ^ 2 = m : f x s'
    | otherwise = m : f x'
    (union s' $ fromList $ map (\y -> x'^2+(x'+y)*y) [0..x'])
    where x' = x + 1
    (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Julia
    function isA003136(n)
        n % 3 == 2 && return false
        n in [0, 1, 3] && return true
        M = Int(round(2*sqrt(n/3)))
        for y in 0:M, x in 0:y
            n == x^2 + y^2 + x*y && return true
        end
        return false
    end
    A003136list(upto) = [n for n in 0:upto if isA003136(n)]
    A003136list(192) |> println # Peter Luschny, Mar 17 2018
    
  • Magma
    [n: n in [0..192] | NormEquation(3, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    readlib(ifactors): for n from 2 to 200 do m := ifactors(n)[2]: flag := 1: for i from 1 to nops(m) do if m[i,1] mod 3 = 2 and m[i,2] mod 2 = 1 then flag := 0; break fi: od: if flag=1 then printf(`%d,`,n) fi: od: # James Sellers, Dec 07 2000
  • Mathematica
    ok[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x*y + y^2, {x, y}, Integers]]]; Select[Range[0, 192], ok] (* Jean-François Alcover, Apr 18 2011 *)
    nn = 14; Select[Union[Flatten[Table[x^2 + x*y + y^2, {x, 0, nn}, {y, 0, x}]]], # <= nn^2 &] (* T. D. Noe, Apr 18 2011 *)
    QP = QPochhammer; s = QP[q]^3 / QP[q^3]/3 + O[q]^200; Position[ CoefficientList[s, q], n_ /; n != 0] - 1 // Flatten (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    isA003136(n)=local(fac,flag);if(n==0,1,fac=factor(n);flag=1;for(i=1,matsize(fac)[1],if(Mod(fac[i,1],3)==2 && Mod(fac[i,2],2)==1,flag=0));flag)
    
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2+z+1),n) \\ Ralf Stephan, Oct 18 2013
    
  • PARI
    x='x+O('x^200); p=eta(x)^3/eta(x^3); for(n=0, 199, if(polcoeff(p, n) != 0, print1(n, ", "))) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    list(lim)=my(v=List(),y,t); for(x=0,sqrtint(lim\3), my(y=x,t); while((t=x^2+x*y+y^2)<=lim, listput(v,t); y++)); Set(v) \\ Charles R Greathouse IV, Feb 05 2017
    
  • PARI
    is_a003136(n) = !n || #qfbsolve(Qfb(1, 1, 1), n, 3) \\ Hugo Pfoertner, Aug 04 2023
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A003136_gen(): return (n for n in count(0) if all(e % 2 == 0 for p,e in factorint(n).items() if p % 3 == 2))
    A003136_list = list(islice(A003136_gen(),30)) # Chai Wah Wu, Jan 20 2022

Formula

Either n=0 or else in the prime factorization of n all primes of the form 3a+2 must occur to even powers only (there is no restriction of primes congruent to 0 or 1 mod 3).
If n is in the sequence, then n^k is in the sequence (but the converse is not true). n is in the sequence iff n^(2k+1) is in the sequence. - Ray Chandler, Feb 03 2009
A088534(a(n)) > 0. - Reinhard Zumkeller, Oct 30 2011
The sequence is multiplicative in the sense that if m and n are in the sequence, so is m*n. - Jon Perry, Dec 18 2012
Comments from Richard C. Schroeppel, Jul 20 2016: (Start)
The set is also closed under restricted division: If M and N are members, and M divides N, then N/M is a member.
If N == 2 (mod 3), N is not in the sequence.
The density of members (relative to the integers>0) gradually falls to 0. The density goes as O(1/sqrt(log N)). This implies that, if N is a member, the average expected number of representations of N is O(sqrt(log N)).
Representations usually come in sets of 6: (K,L), (K+L,-K), (K+L,-L) and their negatives. (End)
Since Q(zeta), where zeta is a primitive 3rd root of unity has class number 1, the situation as to whether an integer is of the form x^2 + xy + y^2 is similar to the situation with x^2 + y^2: n is of that form if and only if every prime p dividing n which is = 5 mod 6 divides it to an even power. The density of 1/sqrt(x) that Rich mentioned is an old result due to Landau. - Victor S. Miller, Jul 20 2016
From Juris Evertovskis, Dec 07 2017; Jan 01 2020: (Start)
In the prime factorization of n, let S_1 be the set of distinct prime factors p_i for which p_i == 1 (mod 3), let S_2 be the set of distinct prime factors p_j for which p_j == 2 (mod 3), and let M be the exponent of 3. Then n = 3^M * (Product_{p_i in S_1} p_i ^ e_i) * (Product_{p_j in S_2} p_j ^ e_j), and the number of solutions for x^2+xy+y^2=n is 6*Product_{p_i in S_1} (e_i + 1) if all e_j are even and 0 otherwise.
For all Löschian numbers there are nonnegative X,Y such that X^2+XY+Y^2=n. For x,y such that x^2+xy+y^2=n take X=min(|x|,|y|), Y=|x+y| if xy<0 and X=|x|, Y=|y| otherwise. (End)

A260682 Löschian numbers (A003136) of the form 6*k+1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 121, 127, 133, 139, 151, 157, 163, 169, 175, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 289, 301, 307, 313, 325, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457, 463, 469, 475, 481, 487, 499
Offset: 1

Views

Author

Joerg Arndt, Nov 15 2015

Keywords

Comments

Odd terms of A202822, which lists Löschian numbers of the form 3*k+1. - Altug Alkan, Nov 15 2015

Crossrefs

Programs

  • Haskell
    a260682 n = a260682_list !! (n-1)
    a260682_list = filter ((== 1) . flip mod 6) a003136_list
    -- Reinhard Zumkeller, Nov 16 2015
  • Mathematica
    nn = 25; Select[Union[Flatten[Table[x^2 + x*y + y^2, {x, 0, nn}, {y, 0, x}]]], Mod[#, 6] == 1 && # <= nn^2&] (* Jean-François Alcover, Jul 21 2018, after T. D. Noe *)
  • PARI
    is(n)=(n%6==1)&&#bnfisintnorm(bnfinit(z^2+z+1), n);
    select(n->is(n), vector(500,j,j))
    
  • PARI
    x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%6==1, print1(n, ", "))) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    isok(n) = if( n<1 || (n%3 == 0), 0, 0 != sumdiv( n, d, kronecker( -3, d))) && n%2==1;
    for(n=0, 500, if(isok(n), print1(n", "))) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if(t%6==1, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
    

A267137 Numbers of the form x^2 + x + x*y + y + y^2 where x and y are integers.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 20, 21, 22, 24, 25, 26, 30, 32, 33, 34, 36, 37, 40, 41, 42, 44, 46, 49, 50, 52, 54, 56, 57, 58, 60, 64, 65, 66, 69, 70, 72, 74, 76, 80, 81, 82, 85, 86, 89, 90, 92, 94, 96, 97, 100, 101, 102, 104, 105, 108, 110, 112, 114, 116
Offset: 1

Views

Author

Altug Alkan, Jan 10 2016

Keywords

Comments

Inspired by relation between A003136 and A202822. See comment section of A202822.
Prime terms of this sequence are 2, 5, 17, 37, 41, 89, 97, 101, 137, 149, ...
Perfect power terms of this sequence are 1, 4, 8, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 144, 169, ...
Obviously, A000290, A002378 and A045944 are subsequences.
The complement of this sequence is A322430. - Kemoneilwe Thabo Moseki, Dec 12 2019

Examples

			1 is a term because (-1)^2 + (-1) + (-1)*(-1) + (-1) + (-1)^2 = 1.
4 is a term because 2^2 + 2 + 2*(-2) + (-2) + (-2)^2 = 4.
24 is a term because 2^2 + 2 + 2*3 + 3 + 3^2 = 24.
		

Crossrefs

Programs

  • Mathematica
    f[{i_, j_}] := (i^2 + i*j + j^2 + i + j); Union@ Map[f, Tuples[Range[-10, 10], 2] ] (* Michael De Vlieger, Sep 23 2024, after Harvey P. Dale at A202822 *)
  • PARI
    x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1((n-1)/3, ", ")));
    
  • PARI
    is(n) = sumdiv( n, d, kronecker( -3, d));
    for(n=0, 1e3, if(is(3*n+1), print1(n, ", ")));
    
  • PARI
    is(n) = #bnfisintnorm(bnfinit(z^2+z+1), n);
    for(n=0, 1e3, if(is(3*n+1), print1(n, ", ")));

Formula

a(n) = (A202822(n) - 1) / 3.

A266836 Odd Löschian numbers.

Original entry on oeis.org

1, 3, 7, 9, 13, 19, 21, 25, 27, 31, 37, 39, 43, 49, 57, 61, 63, 67, 73, 75, 79, 81, 91, 93, 97, 103, 109, 111, 117, 121, 127, 129, 133, 139, 147, 151, 157, 163, 169, 171, 175, 181, 183, 189, 193, 199, 201, 211, 217, 219, 223, 225, 229, 237, 241, 243, 247, 259, 271, 273, 277, 279, 283, 289, 291, 301, 307, 309
Offset: 1

Views

Author

Joerg Arndt, Jan 04 2016

Keywords

Comments

Löschian numbers are numbers of the form x^2 + xy + y^2 for integers x, y; they can all be written in the form 4^e * m where e is a nonnegative integer and m is an odd Löschian number. - Charles R Greathouse IV, Jan 04 2016

Crossrefs

Cf. Loeschian numbers: A003136 (all), A202822 (3*k+1), A260682 (6*k+1).

Programs

  • Mathematica
    fQ[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x y + y^2, {x, y}, Integers]]]; Select[2 Range@ 155 - 1, fQ] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003136 *)
  • PARI
    is(n)=(n%2==1) && #bnfisintnorm(bnfinit(z^2+z+1), n);
    
  • PARI
    x='x+O('x^1000); p=eta(x)^3/eta(x^3); for(n=0, 999, if(polcoeff(p, n) != 0 && n%2==1, print1(n, ", "))) \\ Altug Alkan, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if(t%2, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017

A270248 Even Löschian numbers.

Original entry on oeis.org

0, 4, 12, 16, 28, 36, 48, 52, 64, 76, 84, 100, 108, 112, 124, 144, 148, 156, 172, 192, 196, 208, 228, 244, 252, 256, 268, 292, 300, 304, 316, 324, 336, 364, 372, 388, 400, 412, 432, 436, 444, 448, 468, 484, 496, 508, 516, 532, 556, 576, 588, 592, 604, 624, 628, 652, 676
Offset: 1

Views

Author

Altug Alkan, Mar 14 2016

Keywords

Comments

Even numbers of the form x^2 - xy + y^2.

Examples

			Even number 12 is a term because 12 = 2^2 + 2*2 + 2^2.
		

Crossrefs

Cf. Loeschian numbers: A003136 (all), A266836 (2*k+1), A202822 (3*k+1), A260682 (6*k+1).

Programs

  • Mathematica
    Select[Range[0, 680, 2], Resolve@ Exists[{x, y}, Reduce[# == (x^2 - x y + y^2), {x, y}, Integers]] &] (* Michael De Vlieger, Mar 15 2016 *)
  • PARI
    x='x+O('x^800); p=eta(x)^3/eta(x^3); for(n=0, 799, if(polcoeff(p, n) != 0 && n % 2 == 0, print1(n, ", ")));
    
  • PARI
    list(lim)=my(v=List(), y, t); forstep(x=0, sqrtint(lim\3), 2, my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y+=2)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017

Formula

a(n) = 2 * A270050(n) = 4 * A003136(n).

A338992 Number of vertices of a hexagonal tessellation that lie on subsequent circles centered at the center of one hexagon.

Original entry on oeis.org

0, 6, 6, 12, 12, 6, 12, 6, 12, 12, 12, 12, 18, 12, 12, 6, 12, 12, 12, 12, 24, 12, 6, 12, 12, 12, 6, 12, 12, 24, 12, 12, 12, 12, 12, 18, 12, 12, 12, 12, 18, 12, 12, 12, 24, 12, 12, 12, 12, 24, 6, 24, 12, 12, 12, 12, 6, 12, 24, 12, 12, 12, 12, 12, 12, 12, 24, 12, 18
Offset: 0

Views

Author

Szymon Lukaszyk, Nov 17 2020

Keywords

Comments

Radii of these circles are square roots of A202822.
This is A217219 with zeros dropped, except for a(0). - Andrey Zabolotskiy, Jun 21 2022

Crossrefs

Cf. A202822, A217219, A338947 (similar but with circles centered at a vertex of one hexagon).

A266918 Perfect power Löschian numbers.

Original entry on oeis.org

1, 4, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936, 2025, 2116, 2187, 2197, 2209, 2304, 2401, 2500
Offset: 1

Views

Author

Altug Alkan, Jan 06 2016

Keywords

Comments

Inspired by A266836. See first comment in A266836.
Intersection of A001597 and A003136.
Obviously, this sequence contains all positive squares.
Perfect powers that are not the Löschian numbers are 8, 32, 125, 128, 216, 512, 1000, 1331, 2048, 2744, 3125, 3375, 4913, 5832, 7776, ...

Examples

			25 is a term because 25 = 5^2 = 5^2 + 5*0 + 0^2.
27 is a term because 27 = 3^3 = 3^2 + 3*3 + 3^2.
243 is a term because 243 = 3^5 = 9^2 + 9*9 + 9^2.
343 is a term because 343 = 7^3 = 18^2 + 18*1 + 1^2.
		

Crossrefs

Cf. Loeschian numbers: A003136 (all), A266836 (2*k+1), A202822 (3*k+1), A260682 (6*k+1).
Cf. A001597.

Programs

  • Mathematica
    fQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; gQ[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x y + y^2, {x, y}, Integers]]]; Select[Range@ 2500, fQ@# && gQ@# &] (* Michael De Vlieger, Jan 06 2016, after Ant King at A001597 and Jean-François Alcover at A003136 *)
  • PARI
    x='x+O('x^10^4); p=eta(x)^3/eta(x^3); for(n=0, 9999, if(polcoeff(p, n) != 0 && (ispower(n) || n==1), print1(n, ", ")));
    
  • PARI
    is(n) = (ispower(n) || n==1) && #bnfisintnorm(bnfinit(z^2+z+1), n);
    for(n=0, 1e4, if(is(n), print1(n, ", ")));

A270672 Löschian numbers (A003136) that are multiples of 3.

Original entry on oeis.org

0, 3, 9, 12, 21, 27, 36, 39, 48, 57, 63, 75, 81, 84, 93, 108, 111, 117, 129, 144, 147, 156, 171, 183, 189, 192, 201, 219, 225, 228, 237, 243, 252, 273, 279, 291, 300, 309, 324, 327, 333, 336, 351, 363, 372, 381, 387, 399, 417, 432, 441, 444, 453, 468, 471, 489, 507, 513, 516, 525, 543, 549
Offset: 1

Views

Author

Altug Alkan, Mar 21 2016

Keywords

Comments

Numbers of the form 3*(x^2 + xy + y^2).
Intersection of A008585 and A003136.

Examples

			21 is a term because 21 = 3*7 = 4^2 + 4*1 + 1^2.
		

Crossrefs

Cf. Loeschian numbers: A003136 (all), A270248 (2*k), A266836 (2*k+1), A202822 (3*k+1), A260682 (6*k+1).

Programs

  • Mathematica
    Select[Range[0, 600], Resolve[Exists[{x, y}, Reduce[# == 3 (x^2 + x y + y^2), {x, y}, Integers]]] &] (* Michael De Vlieger, Mar 21 2016 *)
  • PARI
    x='x+O('x^1000); p=eta(x)^3/eta(x^3); for(n=0, 999, if(polcoeff(p, n) != 0 && n % 3 == 0, print1(n, ", ")));
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y+=3)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017

A261558 Euclid numbers (A006862) of the form 3*(i*i + i*j + j*j + i + j) + 1 where i and j are integers.

Original entry on oeis.org

7, 31, 211, 2311, 510511, 6469693231, 200560490131, 304250263527211, 117288381359406970983271, 7858321551080267055879091, 40729680599249024150621323471, 232862364358497360900063316880507363071, 279734996817854936178276161872067809674997231
Offset: 1

Views

Author

Altug Alkan, Nov 18 2015

Keywords

Comments

Intersection of A006862 and A202822.

Examples

			a(1) = 7 because 7 = 2*3 + 1 = 3*(1^2 + 1*0 + 0^2 + 1 + 0) + 1.
		

Crossrefs

Programs

  • PARI
    a(n) = prod(k=1, n, prime(k)) + 1;
    isA(n) = if( n<1 || (n%3 == 0), 0, 0 != sumdiv( n, d, kronecker( -3, d)));
    for(n=0, 30, if(isA(a(n)), print1(a(n), ", ")))
Showing 1-9 of 9 results.